1 / 16

等腰三角形的性质

等腰三角形的性质. 看一看:. 共同特点. 议一议:. (1) 上图中这些物体或建筑物的形状与我们学过的什么图形类似?. (2) 这种图形有什么特点或性质?该怎样证明你的观点?. 证明前,先回顾已学过的定理或命题?. 公理 三边对应相等的两个三角形全等。( SSS ) 公理 两边及其夹角对应相等的两个三角形全等。( SAS ) 公理 两角及其夹边对应相等的两个三角形全等。( ASA ) 公理 全等三角形的对应边相等、对应角相等。 推论 两角及其其中一角的对边对应相等的两个三角形。( AAS ). A. B. C. 猜一猜:. 等腰三角形的两个底角相等。.

Download Presentation

等腰三角形的性质

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 等腰三角形的性质

  2. 看一看:

  3. 共同特点

  4. 议一议: (1)上图中这些物体或建筑物的形状与我们学过的什么图形类似? (2)这种图形有什么特点或性质?该怎样证明你的观点? 证明前,先回顾已学过的定理或命题?

  5. 公理 三边对应相等的两个三角形全等。(SSS) 公理 两边及其夹角对应相等的两个三角形全等。(SAS) 公理 两角及其夹边对应相等的两个三角形全等。(ASA) 公理 全等三角形的对应边相等、对应角相等。 推论 两角及其其中一角的对边对应相等的两个三角形。(AAS)

  6. A B C 猜一猜: 等腰三角形的两个底角相等。 已知: Δ ABC中,AB=AC. 求证: ∠B= ∠C. (下面给出三种证法,可视情况, 任选一种讲解,另两种让学生自己证明。)

  7. A B C 作顶角的平分线 证明:等腰三角形的两个底角相等 已知: △ ABC中,AB=AC. 求证: ∠B= ∠C. 1 2 证明: 作顶角的平分线AD. 在△BAD和△CAD中, AB=AC ( 已知 ), ∠ 1= ∠ 2 ( 辅助线作法 ), AD=AD (公共边) , ∴ △BAD ≌ △CAD (SAS). ∴ ∠ B= ∠C (全等三角形的对应角相等).

  8. A B C 作底边的中线 证明:等腰三角形的两个底角相等 已知: △ ABC中,AB=AC. 求证: ∠B= ∠C. D 证明: 作底边的中线AD. 在△BAD和△CAD中, AB=AC ( 已知 ), BD=CD ( 辅助线作法 ), AD=AD (公共边) , ∴ △BAD ≌ △CAD (SSS). ∴ ∠ B= ∠C (全等三角形的对应角相等).

  9. A B C 作底边的高线 证明:等腰三角形的两个底角相等 已知: △ ABC中,AB=AC. 求证: ∠B= ∠C. D 证明: 作底边的高线AD. 在△BAD和△CAD中, AB=AC ( 已知 ), AD=AD (公共边) , ∴ Rt△BAD ≌Rt △CAD (HL). ∴ ∠ B= ∠C (全等三角形的对应角相等).

  10. 由上面的证明, 我们得出哪些结论?

  11. 等腰三角形的性质定理 等腰三角形的两个底角相等 (简写成“等边对等角”) 推论1 等腰三角形顶角的平分线平分底边并且垂直于 底边. 等腰三角形的顶角平分线、底边上的中线、底边上的高 互相重合.即: “三线合一”

  12. A B C 想一想: 在△ ABC中,AB=AC=BC,利用已有的知识,如何推导出 ∠A、 ∠B 、∠C 的度数.

  13. 巩固练习: (1)等边三角形的各角都相等,并且每一个角都等于60 º . (2)将下面证明中每一步的理由写在括号内: 已知:如图,AB=CD,AD=CB。 求证:∠A= ∠C。 证明:连接BD。在△BAD和△DCB中。 ∵AB= CD( ), AD= CB( ), BD= DB( ), D A ∴ △BAD ≌△DCB ( ). C ∴ ∠A= ∠C( ). B

More Related