370 likes | 464 Views
B D (*) D (*) K Jolanta Brodzicka, Henryk Palka INP Krakow B G M December 08 , 2004. Outline : On B D (*) D (*) K for 250fb -1 On D sJ (2700). B + D - D + K + B 0 D - D + K 0 S. 1 st observation. 1 st observation. B + D * - D + K + B 0 D * - D + K 0 S.
E N D
B D(*)D(*)K Jolanta Brodzicka, Henryk Palka INP Krakow BGM December08, 2004 • Outline : • OnB D(*)D(*)K for 250fb-1 • On DsJ(2700)
B+ D-D+K+B0 D-D+K0S 1st observation 1st observation B+ D*-D+K+B0 D*-D+K0S B+ D*-D*+K+ B0 D*-D*+K0S(shown last year) 1st observation Changes since last BAM • Full data sample re-skimmed because: • low efficiency in DK0modes has been noticed • inconsistent IP cuts for svd1 and svd2 data • Improvements obtained: • new B D(*)D(*)Kchannelsobserved colour suppressed and usefull for CPV • S/B increase • DsJ(2700) D0K+ : conclusions remain valid J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
colour suppressed decays 2-dimMbc vs.E unbinned likelihoodfit used • B+ D-D+K+ for Mbc>5.273 GeV for E<15MeV N/7MeV N/2.5MeV S = 45.6±8.5 stat signif = 8.0 1st observation • B+ D*-D+K+ for Mbc>5.273 GeV for E<30MeV N/7MeV N/2.5MeV S = 73.5±9.9 stat signif = 12.5 • B+ D*-D*+K+ for E<25MeV for Mbc>5.27 GeV N/7MeV S = 11.9±3.6 stat signif = 6.8 N/2.5MeV 1st observation Mbc E J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
modes interesting for CPV • B0 D-D+K0S for Mbc >5.273 GeV for E<15MeV N/7MeV S = 38.0±8.1 stat signif = 7.4 N/2.5MeV 1st observation • B0 D*-D+K0S for Mbc >5.273 GeV for E<30MeV N/7MeV N/2.5MeV S = 60.4±9.5 stat signif = 14.7 • B0 D*-D*+K0S for Mbc >5.27 GeV for E<25MeV N/7MeV S = 14.7±3.9 stat signif = 9.1 N/2.5MeV E Mbc J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
Preliminary J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
for Mbc >5.273 GeV for E<15MeV N/7MeV N/2.5MeV • B+ D0D0K+ E Mbc for Mbc >5.273 GeV for E<15MeV N/7MeV E S = 151.5±18.0 S/B=0.7 • B0 D-D0K+ N/2.5MeV S = 208.5±19.0 S/B=0.54 N/2.5MeV Mbc Fitting method: 2-dimMbc vs.E unbinned likelihood fit L_Sig(Mbc, E) = S•(G (Mbc)•G(E)) + S•(G(Mbc)•G(E)) + S2•(G(Mbc)•G(E))2 L_Bckg (Mbc, E) = B•ARG (Mbc) • POL_2 (E) L= L_Sig + L_Bckg S, S2: regions with missing ,2 J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
Dalitz plot and projections for LR > 0.04 B+ D0D0K+ Background:elliptical strip 6 to 10 in Mbc, E, surrounding the signal region Mbc > 5.273 GeV E<15 MeV (~3 ) M2( D0K+) DsJ(2700) DsJ(2573) N / 20MeV (4160) M2( D0D0) (3770) M( D0K+) M( D0D0 ) N / 20MeV N / 20MeV M( D0 K+) for signal-box events : (4160) (3770) DsJ(2700) reflection (4040) DsJ(2700) (4160) reflection (3770)reflection (3770)reflection DsJ(2700) reflection DsJ(2573) (4160) reflection J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
Background subtracted mass distributions 2dim Mbc vs.E fits ininv. mass bins B signal in mass bins (4160) DsJ(2700) B+ D0D0K+ M( D0K+) M( D0D0 ) Signal / 50MeV M( D0K+) wrong flavour comb. (3770) Signal / 50MeV Signal / 50MeV J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
Signal / 50MeV M( D0D0 ) M( D0K+) (4160)reflection Can we explainM( D0K+) distributions by reflections from known states? Assumption: only (4160) in M( D0D0 ) distr. @ 4GeV region N = 54.4 ± 10.8 M = 4160 MeVfixed = 80 MeV fixed Signal / 50MeV N = 69.8 ± 11.5 M = 4100 MeVfixed = 100 MeV fixed Signal / 50MeV Signal / 50MeV does not explain M( D0K+) bump at 2.7GeV J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
total (4160) yield: 27 ±11 events (for 2nd half helicity distr: 20% smaller eff ) M( D0D0 ) M( D0D0 ) M = 4160 MeVfixed = 80 MeV fixed N = 34.9 ± 7.2 M = 3778 MeVfixed = 25.3 MeV fixed Charmonia • (4160) To estimate of the (4160)contribution to the 2.7GeV peak: Signal / 50MeV M(D0D0) for M(D0K+) > 2.97GeV (4160) in½ helicity distr. 14.8 ±6.4events (other fit variants checked) contribution to theDsJ(2700): 12 events • (3770) Signal / 25MeV • resonance described by non-relativistic Breit-Wigner • nonresonant component – threshold function J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
B+ D0D0K+ N = 70.0 ± 12.2 M = 2716± 13 MeV = 130 ± 31 MeV fitted B Signal DsJ(2700) M(D0D0)>3845 MeV (3770) region removed: Fit to background-free D0K+ mass spectrum • resonance described by non-relativistic Breit-Wigner • Phase Space (nonresonant component) is described by 3body MC PS • Reflection shape: (according to cos2 angular distribution of (4160) )from MC : B+ (4160) K+ Signal / 50MeV systematic error from (4160) param.: N: ± 4 M:± 2 MeV : +3 -10 MeV M( D0K+) reflection from (4160) (normalized to 27) (+ non-resonant component ) (interference effects – neglected) J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
Explanation ofmass spectra B+ D0D0K+ Signal / 50MeV Signal / 50MeV M( D0K+) M( D0K+) M( D0D0 ) (4160) 27 ± 12 M=4160 =80MeV (3770) 35 ± 7 M=3770 =25MeV Signal / 50MeV DsJ(2700) 70± 12 M=2700 =140MeV spin J=1 assumed for DsJ(2700) wrong flavour comb. Contributions from considered states: (normalized to yields) (shapes from MC studies) (plotted by adding) J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
K+ D0K+ B D D0 fitted B Signal (corrected for acceptance) (4160) reflection Angular distribution Helicity angle : angle between K+momentum in D0K+rest frame and D0K+momentum (the boost direction) in B rest frame DsJ(2700) region: B+ D0D0K+ signal-box 2.58 < M(D0K+) < 2.84 GeV (130MeV window ) cosdistribution obtained using 2-dim Mbc vs.E fit ineach cosbin(to subtract background) Acceptance for signal MC B+ D0 DsJ(2720)(K)(K) For DsJ(2720)J=1 assumed Ang.distribution: cos2 Eff. corrected signal J=1 hypothesis /n.d.f = 0.1/4 J=2hypothesis /n.d.f = 8.1/4 J=0hypothesis /n.d.f = 16/4 Acceptance cos cos J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
D0 Helicity angle : angle between D0momentum in D0D0rest frame and D0D0momentum in B rest frame D0D0 B K+ D0 DsJ(2700) reflection Angular distribution of cosdistribution obtained using 2-dim Mbc vs.E fit ineach cos bin (to subtract background) (4160) region: B+ D0D0K+ signal-box 4.0 < M(D0 D0) < 4.2 GeV (100MeV window ) (3770) region: B+ D0D0K+ signal-box 3.7 < M(D0 D0) < 3.845 GeV (3 ) Eff. corrected signal Eff. corrected signal cos cos J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
for signal-box events : Mbc > 5.273 GeV E<18 MeV (~3 ) Dalitz plot and projections B0 D-D0K+ LR > 0.01 Backgroundnormalized to number of bckgd. events in signal box DsJ(2573) DsJ(2700) DsJ(2700) reflection N / 20MeV M2( D0D- ) M2( D0K+) M( D-D0 ) DsJ(2700) DsJ(2700) reflection DsJ(2573) N / 20MeV N / 20MeV M( D0K+) M( D-K+) J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
Background subtracted mass distributions 2dim Mbc vs.E fits ininv. mass bins B signal in mass bins B0 D-D0K+ • DsJ(2700) observed and a shoulder (DsJ(2573) ?) Signal / 50MeV M( D0K+) Signal / 50MeV Signal / 50MeV M( D-D0 ) M( D-K+) J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
N = 122.4 ± 17.9 M = 2710 ± 9 MeV = 127 ± 27 MeV N = 12.6 ± 4.0 M = 2573MeV fixed = 15 MeV fixed fitted B Signal DsJ(2573) DsJ(2700) Fit to background-free D0K+ mass spectrum • resonances described by non-relativistic Breit-Wigners • DsJ(2573)the convolution BW G(=50MeV) • Phase Space (nonresonant component) is described by 3body MC PS B0 D-D0K+ Signal / 50MeV M( D0K+) J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
DsJ(2573) 13± 4 M=2573 =15MeV DsJ(2700) 122± 18 M=2700 =140MeV Explanation ofmass spectra spin J=1 assumed for DsJ(2700) B0 D-D0K+ Signal / 50MeV Signal / 50MeV M( D0K+) M( D-D0 ) wrong flavour comb. Signal / 50MeV Contributions from considered states: (normalized to yields) (shapes from MC studies) M( D-K+) (plotted by adding) J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
fitted B Signal (corrected for acceptance) Angular distribution DsJ(2700) region: B0 D-D0K+ signal-box 2.58 < M(D0K+) < 2.84 GeV (130MeV window ) B0 D-D0K+ Eff. corrected signal Acceptance for signal MC B0 D-DsJ(2700)(K)(K) For DsJ(2700)J=1 assumed cos Acceptance cos J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
Summary • results shown at last BAM confirmed with reanalised data • new channels observed ( 3 of them for the first time) • publish result on DsJ(2700) in B+ D0D0K+ • publish BF’s • write PhD thesis Plan J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
Backup slides J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
B0 D*-D0K+ S = 218.1±17.8 S/B=1.3 • B- D0D*-K0S S = 52.6±9.1 S/B=1.0 E Mbc J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
Analysis method • selection cuts accepted events :R2< 0.3 tracks :IP_dz< 5cmIP_dr< 0.4cm K± :P(K/) > 0.4± :P(/K) > 0.1electron veto: el_id < 0.95 K0S:M(+ -) - MKs <15MeVonly goodK0saccepted 0:E >50 MeVM( ) -M0 <15MeV • D(*) reconstruction D0K, K3, K0, Ks, KKBF ~ 28%of total D± K, Ks, KK, KsKBF ~ 12%of total M(D)-M(DPDG) < 20MeV ( D0 K0: -50MeV ) vertex fit (cl > 0.) and mass constraint fit applied p(D) < 2 GeVin (4S) system D(*) ± D0± M(D*)-M(D)-mPDG) < 2.5MeV vertex fit (cl > 0.) • B D(*)D(*)Kreconstruction B vertex fit:with IP and B constraints Mbc> 5.2 GeV -0.40 < E < 0.35 GeV J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
Dplots for ~11fb-1after preselection p(D) < 2GeVin (4S) system D0K D0K3 D probabilities (LR_D ): LR_D LR_D S(MD) LR_D ( MD )= MD MD S(MD) B(MD) + D0K0 LR_D D± K D± Ks MD LR_D LR_D MD MD Likelihood ratios: S(MD), B(MD)parameterization from fitstodata (inclusively reconstructed D0, D± in each decaymode separately ) J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
B probability ( LR_B ): LR_B = LR_D1× LR_D2 B+ D0D0K+ B0 D-D0K+ LR_B LR_B M_D0 * M_D0 M_D0 * M_D- LR_B vs. M(D1)*M(D2) for signal box-events : • LR_B used for: • choice of best B candidate(withmax LR_B) • background discrimination J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
LR_B cut (good for background reduction and S/B improvement) B+ D0D0K+ Data for 250fb-1 for Mbc>5.27GeV Signal MC B+ D0D0K+ no LR_B cut S / sqrt (S + B ) LR_B > 0.04 LR_B > 0.1 LR_D0 * LR_D0cut Signal MC BF = 1.5 * 10-3 B+ D0D0K+ B+ D0D0K+ Background:Mbcsideband E J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
M( D0D0 ) M( D0D0 ) • (4160) fit variants M(D0D0) for M(D0K+) > 2.97GeV ( ≡ ½ of the (4160)helicity distr.) N = 17.3 ± 7.0 M = 4160 MeVfixed = 100 MeV fixed total (4160) yield Signal / 50MeV 31 ± 13 N = 66.3 ± 12.1 M = 2717 ± 14 MeV = 133± 33 MeV N = 23.4 ± 7.1 M = 4100 MeVfixed = 100 MeV fixed total (4160) yield Signal / 50MeV Signal / 50MeV 42 ± 13 M( D0K+) J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
N = 72.9 ± 11.7 M = 2714 ± 10 MeV = 120 ± 26 MeV • no (4160) contribution to the 2.7GeV peak: DsJ(2700) Signal / 50MeV M( D0K+) J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
Explanation ofmass spectra B+ D0D0K+ Signal / 50MeV Signal / 50MeV M( D0K+) M( D0K+) M( D0D0 ) (4160) 42 ± 13 M=4100 =100MeV (3770) 35 ± 7 M=3770 =25MeV Signal / 50MeV DsJ(2700) 66± 12 M=2700 =140MeV spin J=1 assumed for DsJ(2700) (4160)gen. with:M=4100MeV =100MeV wrong flavour comb. Contributions from considered states: (normalized to yields) (shapes from MC studies) (plotted by adding) J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
Explanation ofmass spectraspin J=0 assumed for DsJ(2700) B+ D0D0K+ Signal / 50MeV Signal / 50MeV M( D0K+) M( D0K+) M( D0D0 ) (4160) 27 ± 12 M=4160 =80MeV (3770) 35 ± 7 M=3770 =25MeV Signal / 50MeV DsJ(2700) 70± 12 M=2700 =140MeV Contributions from considered states: (normalized to yields) (shapes from MC studies) (plotted by adding) J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
Explanation ofmass spectraspin J=2 assumed for DsJ(2700) B+ D0D0K+ Signal / 50MeV Signal / 50MeV M( D0K+) M( D0K+) M( D0D0 ) (4160) 27 ± 12 M=4160 =80MeV (3770) 35 ± 7 M=3770 =25MeV Signal / 50MeV DsJ(2700) 70± 12 M=2700 =140MeV Contributions from considered states: (normalized to yields) (shapes from MC studies) (plotted by adding) J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
DsJ(2573) 13± 4 M=2573 =15MeV DsJ(2700) 122± 18 M=2700 =140MeV Explanation ofmass spectra spin J=0 assumed for DsJ(2700) B0 D-D0K+ Signal / 50MeV Signal / 50MeV M( D0K+) M( D-D0 ) wrong flavour comb. Signal / 50MeV Contributions from considered states: (normalized to yields) (shapes from MC studies) M( D-K+) (plotted by adding) J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
DsJ(2573) 13± 4 M=2573 =15MeV DsJ(2700) 122± 18 M=2700 =140MeV Explanation ofmass spectra spin J=2 assumed for DsJ(2700) B0 D-D0K+ Signal / 50MeV Signal / 50MeV M( D0K+) M( D-D0 ) wrong flavour comb. Signal / 50MeV Contributions from considered states: (normalized to yields) (shapes from MC studies) M( D-K+) (plotted by adding) J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
fitted B Signal Angular distributions uncorrected for acceptance DsJ(2700) region: B DD0K+ signal-box 2.58 < M(D0K+) < 2.84 GeV B+ D0D0K+ B0 D-D0K+ cos cos J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
B+ D0D0K+ M2( D0D0) Efficiency map Efficiency [‰] M2( D0K+) J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004
B+ D0D0K+ b cW - c c s + dd (uu) • External + Internal diagrams • Both DK and DD states expected • D0K+ is exotic _ Physics motivations B D(*)D(*)K : good place to explore spectroscopy: D(*)K from W vertex Leading quark diagrams: B0 D-D0K+ B0 D*-D0K+ • only External diagram • D0K+is the only non-exotic comb., D*-D0 have > 2q content J.Brodzicka, H.PalkaINP Krakow BGM December 08, 2004