1 / 38

Data Mining: Mengenal dan memahami data

Data Mining: Mengenal dan memahami data. Mengenal dan memahami data. Objek data dan macam-macam atribut Statistik diskriptif data Visualisasi data Mengukur kesamaan dan ketidaksamaan data. Types of Data Sets. Record Relational records Data matrix, e.g., numerical matrix

papaj
Download Presentation

Data Mining: Mengenal dan memahami data

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Data Mining: Mengenal dan memahami data

  2. Mengenal dan memahami data • Objek data dan macam-macam atribut • Statistik diskriptif data • Visualisasi data • Mengukur kesamaan dan ketidaksamaan data

  3. Types of Data Sets • Record • Relational records • Data matrix, e.g., numerical matrix • Document data: text documents: term-frequency vector • Transaction data • Graph and network • World Wide Web • Social or information networks • Ordered • Video data: sequence of images • Temporal data: time-series • Spatial, image and multimedia: • Spatial data: maps • Image data: • Video data:

  4. Data Objects • Data object menyatakan suatu entitas • Contoh: • Database penjualan: customers, barang-barang yang dijual, penjualan • Database medis: pasien, perawatan • Database universitas: mahasiswa, professor, perkuliahan • Data objects dijelaskan dengan attribut-atribut. • Baris-baris Database -> data objects; • Kolom-kolom ->attribut-atribut.

  5. Atribut • Attribut ( dimensi, fitur, variabel): menyatakan karakteristik atau fitur dari data objek • Misal., ID_pelanggan, nama, alama • Tipe-tipe: • Nominal • Ordina • Biner • Numerik: • Interval-scaled • Ratio-scaled

  6. Attribute Types • Nominal: kategori, keadaan, atau “nama suatu hal” • Warna rambut • Status , kode pos, dll, NRP dll • Binary :Atribut Nominal dengan hanya 2 keadaan (0 dan 1) • Symmetric binary: keduanya sama penting • Misal: jenis kelamin, • Asymmetric binary: keduanya tidak sama penting. • Misal : medical test (positive atau negative) • Dinyatakan dengan 1 untuk menyatakan hal yang lebih penting ( positif HIV) • Ordinal • Memiliki arti secara berurutan, (ranking) tetapi tidak dinyatakan dengan besaran angka atau nilai. • Size = {small, medium, large}, kelas, pangkat

  7. Atribut Numerik • Kuantitas (integer atau nilai real) • Interval • Diukur pada skala dengan unit satuan yang sama • Nilai memiliki urutan • tanggal kalender • No true zero-point • Ratio • Inherent zero-point • Contoh:Panjang, berat badan, dll • Bisa mengatakan perkalian dari nilai objek data yang lain • Misal : panjang jalan A adalah 2 kali dari panjang jalan B

  8. Atribut Discrete dan kontinu • Atribut Diskrit • Terhingga, dapat dihitung walaupun itu tak terhingga • Kode pos, kata dalam sekumpulan dokumen • Kadang dinyatakan dengan variabel integer • Catatan Atribut Binary: kasus khusus atribut diskrit • Atribut Kontinu • Memilki nilai real • E.g., temperature, tinggi, berat • Atribut kontinu dinyatakn dengan floating-point variables

  9. Basic Statistical Descriptions of Data • Tujuan • Untuk memahami data: central tendency, variasi dan sebaran • Karakteristik Sebaran data • median, max, min, quantiles, outliers, variance, dll.

  10. Mengukur Central Tendency • Mean (algebraic measure) (sample vs. population): Note: n jumlah sample dan N nilai populasi. • Mean/rata-rata: • Trimmed mean: • Median: • Estimated by interpolation (for grouped data): • Mode • Value that occurs most frequently in the data • Unimodal, bimodal, trimodal • Empirical formula: Median interval

  11. Data Mining: Concepts and Techniques Symmetric vs. Skewed Data • Median, mean and mode of symmetric, positively and negatively skewed data symmetric positively skewed negatively skewed

  12. Mengukur sebaran Data • Quartiles, outliers and boxplots • Quartiles: Q1 (25th percentile), Q3 (75th percentile) • Inter-quartile range: IQR = Q3 –Q1 • Five number summary: min, Q1, median,Q3, max • Outlier: biasanya lebih tinggi atau lebih rendah dari 1.5 x IQR • Variansi dan standar deviasi (sample:s, population: σ) • Variance: (algebraic, scalable computation) • Standard deviation s (atau σ) akar kuadrat daro variance s2 ( atau σ2 )

  13. Boxplot Analysis • Lima nilai dari sebaran data • Minimum, Q1, Median, Q3, Maximum • Boxplot • Data dinyatakan dengan box • Ujung dari box kuartil pertama dan ketiga, tinggi kotak adalah IQR • Median ditandai garis dalam box • Outliers: diplot sendiri diluar

  14. Sifat-sifat kurva Distribusi Normal • Kurva norma • dari μ–σ to μ+σ: berisi 68% pengukukuran (μ: mean, σ: standar deviasi) • Dari μ–2σ to μ+2σ: berisi 95% pengukuran • Dari μ–3σ to μ+3σ: berisi 99.7% pengukuran

  15. Histogram Analysis • Histogram: grafik menampilkan tabulasi dari frekwensi data

  16. Histograms Often Tell More than Boxplots • Dua histogram menunjukkan boxplot yang sama • Nilai yang sama: min, Q1, median, Q3, max • Tetapi distribusi datanya berbeda

  17. Scatter plot • Melihat data bivariate data untuk melihat cluster dan outlier data, etc • Setiap data menunjukkan pasangan koordinat dari suatu data

  18. Positively and Negatively Correlated Data • Kiri atas korelasi positif • Kanan atas korelasi negatif

  19. Uncorrelated Data

  20. Data Visualization • Why data visualization? • Gain insight into an information space by mapping data onto graphical primitives • Provide qualitative overview of large data sets • Search for patterns, trends, structure, irregularities, relationships among data • Help find interesting regions and suitable parameters for further quantitative analysis

  21. Geometric Projection Visualization Techniques • Visualization of geometric transformations and projections of the data • Methods • Scatterplot and scatterplot matrices

  22. Scatterplot Matrices Matrix of scatterplots (x-y-diagrams) of the k-dim. data [total of (k2/2-k) scatterplots] Used byermission of M. Ward, Worcester PolytechnicInstitute

  23. Similarity and Dissimilarity • Similarity • Mengukur secara Numerik bagaimana kesamaan dua objek data • Tinggi nilainya bila benda yang lebih mirip • Range [0,1] • Dissimilarity (e.g., distance/jarak) • Ukuran numerik dari perbedaan dua objek • Sangat rendah bila benda yang lebih mirip • Minimum dissimilarity i0

  24. Data Matrix and Dissimilarity Matrix • Data matrix • n titik data dengan p dimensi • Two modes • Dissimilarity matrix • n titik data yang didata adalah distance/jarak • Matrik segitiga • Single mode

  25. Proximity Measure for Nominal Attributes • Misal terdapat 2 atau lebih nilai, misal., red, yellow, blue, green (generalisasi dari atribut binary) • Metode Simple matching • m: # yang sesuai, p: total # variabel

  26. Proximity Measure for Binary Attributes Object j • A contingency table for binary data • Distance measure for symmetric binary variables: • Distance measure for asymmetric binary variables: • Jaccard coefficient (similarity measure for asymmetric binary variables): Object i • Note: Jaccard coefficient is the same as “coherence”:

  27. Dissimilarity between Binary Variables • Example • Gender is a symmetric attribute • The remaining attributes are asymmetric binary • Let the values Y and P be 1, and the value N 0

  28. Standardizing Numeric Data • Z-score: • X: raw score to be standardized, μ: mean of the population, σ: standard deviation • the distance between the raw score and the population mean in units of the standard deviation • negative when the raw score is below the mean, “+” when above • An alternative way: Calculate the mean absolute deviation where • standardized measure (z-score): • Using mean absolute deviation is more robust than using standard deviation

  29. Example: Data Matrix and Dissimilarity Matrix Data Matrix Dissimilarity Matrix (with Euclidean Distance)

  30. Distance on Numeric Data: Minkowski Distance • Minkowski distance: A popular distance measure where i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two p-dimensional data objects, and h is the order (the distance so defined is also called L-h norm) • Properties • d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness) • d(i, j) = d(j, i)(Symmetry) • d(i, j)  d(i, k) + d(k, j)(Triangle Inequality)

  31. Special Cases of Minkowski Distance • h = 1: Manhattan (city block, L1 norm) distance • E.g., the Hamming distance: the number of bits that are different between two binary vectors • h = 2: (L2 norm) Euclidean distance • h . “supremum” (Lmax norm, Lnorm) distance. • This is the maximum difference between any component (attribute) of the vectors

  32. Example: Minkowski Distance Dissimilarity Matrices Manhattan (L1) Euclidean (L2) Supremum

  33. Ordinal Variables • An ordinal variable can be discrete or continuous • Order is important, e.g., rank • Can be treated like interval-scaled • replace xif by their rank • map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by • compute the dissimilarity using methods for interval-scaled variables

  34. Attributes of Mixed Type • A database may contain all attribute types • Nominal, symmetric binary, asymmetric binary, numeric, ordinal • One may use a weighted formula to combine their effects • f is binary or nominal: dij(f) = 0 if xif = xjf , or dij(f) = 1 otherwise • f is numeric: use the normalized distance • f is ordinal • Compute ranks rif and • Treat zif as interval-scaled

  35. Cosine Similarity • A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document. • Other vector objects: gene features in micro-arrays, … • Applications: information retrieval, biologic taxonomy, gene feature mapping, ... • Cosine measure: If d1 and d2 are two vectors (e.g., term-frequency vectors), then cos(d1, d2) = (d1d2) /||d1|| ||d2|| , where  indicates vector dot product, ||d||: the length of vector d

  36. Example: Cosine Similarity • cos(d1, d2) = (d1d2) /||d1|| ||d2|| , where  indicates vector dot product, ||d|: the length of vector d • Ex: Find the similarity between documents 1 and 2. d1= (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1) d1d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25 ||d1||= (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5=(42)0.5 = 6.481 ||d2||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5=(17)0.5 = 4.12 cos(d1, d2 ) = 0.94

  37. KL Divergence: Comparing Two Probability Distributions • The Kullback-Leibler (KL) divergence: Measure the difference between two probability distributions over the same variable x • From information theory, closely related to relative entropy, information divergence, and information for discrimination • DKL(p(x)||q(x)): divergence of q(x) from p(x), measuring the information lost when q(x) is used to approximate p(x) • Discrete form: • The KL divergence measures the expected number of extra bits required to code samples from p(x) (“true” distribution) when using a code based on q(x), which represents a theory, model, description, or approximation of p(x) • Its continuous form: • The KL divergence: not a distance measure, not a metric: asymmetric, not satisfy triangular inequality

  38. How to Compute the KL Divergence? • Base on the formula, DKL(P,Q) ≥ 0 and DKL(P || Q) = 0 if and only if P = Q. • How about when p = 0 or q = 0? • limp→0p log p = 0 • when p != 0 but q = 0, DKL(p || q) is defined as ∞, i.e., if one event e is possible (i.e., p(e) > 0), and the other predicts it is absolutely impossible (i.e., q(e) = 0), then the two distributions are absolutely different • However, in practice, P and Q are derived from frequency distributions, not counting the possibility of unseen events. Thus smoothing is needed • Example: P : (a : 3/5, b : 1/5, c : 1/5). Q : (a : 5/9, b : 3/9, d : 1/9) • need to introduce a small constant ϵ, e.g., ϵ = 10−3 • The sample set observed in P, SP = {a, b, c}, SQ = {a, b, d}, SU = {a, b, c, d} • Smoothing, add missing symbols to each distribution, with probability ϵ • P′ : (a : 3/5 − ϵ/3, b : 1/5 − ϵ/3, c : 1/5 − ϵ/3, d : ϵ) • Q′ : (a : 5/9 − ϵ/3, b : 3/9 − ϵ/3, c : ϵ, d : 1/9 − ϵ/3). • DKL(P’ || Q’) can be computed easily

More Related