590 likes | 673 Views
Unité d’Enseignement : Evolution du Phytoplancton Marin et Biogéochimie Introduction to Photosynthesis : Evolutionary processes. Christophe Six. UMR UPMC-CNRS 7144 “Adaptation & Diversité en Milieu Marin" Equipe « Procaryotes Photosynthétiques Marins » Station Biologique de Roscoff
E N D
Unité d’Enseignement : Evolution du Phytoplancton Marin et Biogéochimie Introduction to Photosynthesis: Evolutionaryprocesses Christophe Six UMR UPMC-CNRS 7144 “Adaptation & Diversité en Milieu Marin" Equipe « Procaryotes Photosynthétiques Marins » Station Biologique de Roscoff Université Pierre et Marie Curie (Paris VI) Bureau 354, 3ème étage (Bâtiment GT) six@sb-roscoff.fr
h Organic matter Minerals Cofactors . Most of life on Earth is dependent on photosynthesis through food webs. Exception : hydrothermal vents What is photosynthesis ? Sensu lato: Anysynthesis of organicmatterthatis light dependent Common Sense: All processes used by phototrophic organisms using chlorophyll compounds to convert light energy into chemical energy (ATP).
Precambrian Millions years http://www.ipgp.jussieu.fr/files_lib/83_echm-gt.gif Origin of photosynthesis at thescale of Geological times Millions years Millions years
Microfossils of filamentous cyanobacteria West of Australia http://www.interet-general.info/IMG/Stromatolites-2-3.jpg http://www.gc.maricopa.edu/earthsci/imagearchive/stromatolite.jpg http://www.cartage.org.lb/en/themes/Sciences/Paleontology/Paleozoology/Precambrian/Precambrian.htm The oldest fossils : the Stromatolites Stromatolites
Fossil evidences : the stratified iron formations Iron stratified formations Microbial coccoid fossil (Eosphaera) Mont Bruce, West of Australia http://www.geo.vu.nl/~smit/hamersley/hamersley%20iron.jpg 10 µm Formation of Gunflint, North America http://gsc.nrcan.gc.ca/paleochron/05_e.php http://z.about.com/d/geology/1/0/d/-/1/bifslab.jpg http://www.cartage.org.lb/en/themes/Sciences/Paleontology/Paleozoology/Precambrian/mich03.gif
Consequences of the development of oxygenicphotosynthesis Diversité (nombre de taxa) Présent Billion years
The photosyntheticorganisms on Earth . Sulphurous green bacteria Chlorobium, Prosthecochloris, Pelodictyon, Ancalochloris, Chloroherpeton . Non-sulphurous green bacteria Chloroflexus, Chloronema, Heliothrix, Roseiflexus . Non-Sulphurous purple bacteria Rhodospirillum, Rhodobacter, Rhodopseudomonas, Rhodomicrobium . Sulphurous purple bacteria Chromatium, Thiospirillum, Thiopedia . Les heliobacteria Heliobacterium . Photoheterotrophic, anoxygenic, aerobic bacteria Roseobacter, Roseovarius, Erythrobacter . Cyanobacteria = Oxyphotobacteria Synechococcus, Prochlorococcus, Oscillatoria, Anabaena, Synechocystis, Microcystis, Planktothrix, Trichodesmium, Croccosphaera, etc… . Photosynthetic (oxygenic) eukaryotes Rhodophyta, Heterokontophyta, Chlorobionta Lakes & Estuaries Benthic/Planctonic. Stratified freshwater lakes: Anoxiques zones Stillpoorlyknown; Oceans
Oxygenic Two types of reaction centres Antenna = Phycobilisome or Lhc Electron donnors = H2O Anoxygenic A single type of reaction centre -Typical antenna system (BChl & Carotenoids) Electron donnors = reduced compounds Aérobic RC I + RC II Cyanobacteria = oxyphotobacteria (photohétérotrophs & obligatory phototrophs) Photosynthetic eukaryotes: Eukaryotic phytoplankton, macroalgae, bryophytes and vascular plants Aerobic Anaerobic (photohétérotrophs) Green bacteria (Chlorosome – no RuBisCO) Héliobacteria Purple bacteria (RC II – BChl a ou b – (Calvin cycle) RC I Sulphurous (obligatory phototrophs) Non- sulphurous (photoheterotrophs) Sulphurous (obligatory phototrophs) RC I Non- sulphurous (photoheterotrophs) RC II Chloroflexaceae Chlorobiaceae The different groups of photosyntheticorganisms on Earth Photosynthesis
Bactériochlorophylle b Bactériochlorophylle a Reaction centres and bacteriochlorophylls
Sulphurous Green bacteria Chlorobium tepidum Chlorobium sp. BS1 Microbial mat : Chlorobium Yellowstone national park, USA Microbewiki Benthic organisms : 1mm beneath the sediment at the bottom of lakes and estuaries
The reaction centre of Chlorobium spp. . 3 proteins : 2 proteins A (65 kDa) + 1 small proteine C de 8 kDa Cofactors linked to these proteins constituting a double, transmembrane, redox chain . Chargeseparation: expulsion of an e- from a Bchl a P840, . Transfer to an acceptor A0 which has a low redox potential, then to A1 = naphtoquinone
The reaction centre of Chlorobium spp. . Electron tranfer to three Iron-Sulphur clusters, named FX, FA et FB . 2 ferredoxins 2 e- + NAD+ + H+ NADH (universalreductant of metabolicreactions) => 2 excitons are necessary to produce one molecule of NADH Fd soluble
Le centre réactionnel de Chlorobium spp. . Cytochromic system c553 : complexed (4 hemes) or soluble e- given back to P840 . c553reduced by flavocytochrome c551 (1 heme + 1 flavin group) . 2 C551 + S2- C551 + 2 e- + S Sulphur is released in the periplasm
Cyclic transport of e- The electron carrier chain of Chlorobiumspp.
Non-sulphurous purple bacteria Rhodospirillum rubrum Rhodobacter sphaeroides http://www.de.mpi-magdeburg.mpg.de/research/projects/1010/1014/1020/rhodos.jpg http://www.martin-stein.com/images/rhodob.jpg Rhodopseudomonas sp.
Different types of structures of inner foldings of the plasmic membrane Non-sulphurous purple bacteria Rhodobacter sp.
The innerfoldings of Rhodobactersphaeroides (chromatophores)
The antenna complex of Rhodopseudomonas acidophila - LH2 complex : hollow cylinder constituted by 9 motifs = 9 paires de polypeptide et (5-7 kDa) - The 9 are in periphery, the 9 are inner ; bacteriochlorophylls are located between these two crowns - On pair binds 1 ou 2 BChl 18 BChl perpendicular to the plan per LH2 (= B850 abs max at 850nm) - The subunits bind an additional molecule of BChl between two -helices, parallel to the plan These 9 BChl = B800 (abs max à 800nm) - One carotenoid is linked to each Bleu : Polypeptides Orange : B800 bacteriochlorophylls Vert : Carotenoids
The reaction centre of non-sulphurous purple bacteria Rhodobacter sphaeroides Rhodopseudomonas viridis
Photosyntheticapparatus of Rhodobactersp. Protein Structure involved in the photosynthetic activity of Rhodobacter sp. (Cross section of the cytoplasmic membrane)
Synechococcus sp. Marine chloroplasts Fucus sp. Bryopsis sp. Porphyridium sp. Oxygenic photosynthesis n [CO2 + H2O] [CH2O] n + O2 Global reaction : Location : Chloroplasts of vascular plants
Stroma/cytosol Lumen Stroma/cytosol Membranar lipids Photosynthetic membranes : the thylacoids
Whatis a photosystem? Photosystem = reaction centre + photosynthetic antenna . External antenna : the major one . Two large subunits D1/D2 ; PsaAB) . Inner antenna stuck to the reaction centre : the minor one . A number of small subunits . The charge separation : one electron is extracted from a chlorophyll molecule and released in a chain of acceptors Chl (=P680) chl* (=P680*) + e-
Photosystem II antennae . Large diversity of configuration depending on the taxonomic group . Two major structural groups : intrinsic et extrinsic to the thylacoids
LHC type proteins Intrinsic antennae Intrinsic, major PSII antenna (LHC type) PS Thylacoids
Intrinsic antennae Proteins LHC Reaction centres (Top view)
Pigments associated to intrinsicantennae . Chemotaxonomy Chla 19'-hexanoyloxyfucoxanthin Chl b Chl c1 Chl c2 Lutein Peridinin Chl c3 Neoxanthin Fucoxanthin Prasinoxanthin . Differentroles of the xanthophylls: light harvesting & photoprotection Violaxanthin Diadinoxanthin Antheraxanthin Diatoxanthin Zeaxanthin
Pigments associated to intrinsicantennae Chlorophylls a et b
Chl c Absorption properties of chlorophylls
-carotene (vitamin A) -carotene Carotenoids
Carotenoids: absorption properties -Carotene Fucoxanthin Diadinoxanthin Lutein Zeaxanthin
Organisms with extrinsic, photosynthetic antennae Rhodophyta Cyanophyta Cryptophyta
Phycobiliproteins Allophycocyanin (AP) Phycocyanin (PC) Phycoérythrocyanin (PEC) Phycoérythrin (PE) . 4 classes of phycobiliproteins : . The classes of phycobiliproteins are differentiatated by: • The aminoacid sequence of the and chains (between 15 and 20 kDa) • The composition in phycobilins, and therefore their spectral properties Phycocyanobilin (PCB) Phycobiliviolin (PVB) Phycoérythrobilin (PEB) Phycourobilin (PUB) . 4 classes of phycobilins :
Phycobilins PUB Phycourobilin PXB PEB PCB Phycoerythrobilin Phycyanobilin
Phycoerythrins Phycobiliproteins and phycobilins Chromophores donnor vs. Chromophore acceptor The phycobilin placed at -84 Is always the acceptor chromophore, whatever the phycobiliprotein
75 75 83 83 250/61 140 140 159 159 282 159 159 140 140 282 282 83 250/61 75 250/61 83 75 83 83 75 75 140 -140 -159 159 Hexameric PEII diagram PEII dimer Modified after Wilbanks et al. (1991) Phycobiliproteins and phycobilins Synechococcus sp. WH8103
Optical properties of phycobiliproteins PCB PEB PEB PUB Absorbance Wavelength (nm) C-Phycocyanin
Phycobilisomes of Calothrix sp. PCC 7601 (Sidler, 1994) Hexamer ()6 The phycobilisome . Phycobiliprotein hexamers aggregate in macrostructures: Allophycocyanin Phycoerythrin Phycocyanin 11 nm 6 nm coeur Bras
SDS-PAGE (15% acr.) of phycobilisomes fractions Synechococcus sp. PCC7002 (1), Anabaena sp. PCC7120 (2), Mastigocladus laminosus (3) ; Weigh markers (4). (M. laminosus, Reuter and Nickel-Reuter, 1993) Subunits & Linkers Phycobilisome linker polypeptides