420 likes | 661 Views
第十二章 轴对称 小结与复习. 岳麓区坪塘中学 C175. 一 . 轴对称图形. 1 、轴对称图形:. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的 对称轴 。 这时我们也说这个图形关于这条直线(成轴 )对称 。 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做 对称轴 。 折叠后重合的点是对应点 , 叫做 _ 对称点 _____. 2 、轴对称:. 知识回顾:. 3 、 轴对称图形和轴对称的区别与联系.
E N D
第十二章 轴对称 小结与复习 岳麓区坪塘中学C175
一.轴对称图形 1、轴对称图形: • 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。 • 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做_对称点_____. 2、轴对称:
知识回顾: 3、轴对称图形和轴对称的区别与联系 轴对称图形 轴对称 图形 一个 两个 (1)轴对称图形是指( ) 具 有特殊形状的图形, 只对( )图形而言; (2)对称轴( )只有一条 (1)轴对称是指( )图形 的位置关系,必须涉及 ( )图形; (2)只有( )对称轴. 区别 一个 两个 一条 不一定 如果把两个成轴对称的图形 拼在一起看成一个整体,那 么它就是一个轴对称图形. 如果把轴对称图形沿对称轴 分成两部分,那么这两个图形 就关于这条直线成轴对称. 联系
4、轴对称的性质: ①关于某直线对称的两个图形是全等形。 ②如果两个图形关于某条直线对称,那么对称轴是 任何一对对应点所连线段的垂直平分线。 ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 ④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
练习: 1、国旗是一个国家的象征,观察下面的国旗,是轴对称图形的是( ) A.加拿大、韩国、乌拉圭 B.加拿大、瑞典、澳大利亚 C.加拿大、瑞典、瑞士 D.乌拉圭、瑞典、瑞士 C 加拿大 韩国 澳大利亚 乌拉圭 瑞典 瑞士
2、小明照镜子的时候,发现T恤上的英文单词在镜子中呈现“ ”的样子,请你判断这个英文单词是( ) A (B) (A) (D) (C)
L 3、△ABC与△DEF关于直线L成轴对称,则∠C是多少度? 650 750
3. 解:
二.线段的垂直平分线 1、什么叫线段垂直平分线? 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。 2、线段垂直平分线有什么性质? 线段垂直平分线上的点与这条线段的两个端点的距离相等 (纯粹性)。 你能画图说明吗?
3.逆定理:与一条线段两个端点距离相等的点,在线段的垂直平分线上。(完备性)3.逆定理:与一条线段两个端点距离相等的点,在线段的垂直平分线上。(完备性) 4.线段垂直平分线的集合定义: 线段垂直平分线可以看作是 与线段两个端点距离相等的所 有点的集合。
三.用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.三.用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等. 点(x, y)关于x轴对称的点的坐标为______. 点(x, y)关于y轴对称的点的坐标为______. (x, - y) (- x, y)
练 习 (抢答) 1、完成下表. (2, 3) (-1,-2) (-6, 5) (0,1.6) (4,0) (-2, -3) (1, 2) (6, -5) (-4,0) (0, -1.6) 2、已知点P(2a+b,-3a)与点P’(8,b+2). 若点p与点p’关于x轴对称,则a=_____ b=_______. 若点p与点p’关于y轴对称,则a=_____ b=_______. 2 4 -20 6
c 0 · -4 -3 -2 -1 1 2 3 4 5 5 4 · B 3 2 1 -1 -2 -3 -4 例:已知△ABC的三个顶点的坐标分别为A(-3,5),B(- 4,1),C(-1,3),作出△ABC关于y轴对称的图形。 y · · 解:点A(-3,5),B(-4,1), C(-1,3),关于y轴对称 点的坐标分别为A’(3,5), B’(4,1),C’(1,3).依次连接A’B’,B’C’,C’A’,就得到△ABC关于y轴对称的△A’B’C’. A A’ · C’ · B’ x 归纳:(P44)先求出已知图形中的 特殊点(如多边形的顶点或端点)的对应点的坐标,描出并连接这些点,就可 得到这个图形的轴对称图形.
0 -4 -3 -2 -1 1 2 3 4 5 5 4 3 2 y x=1 P(-2,4) P’(4,4) · · 1 ’ M(-1,1) M’(3,1) · · -1 x -2 · · N(-3,-2) N’(5,-2) 15 思考:如图,分别作出点P,M,N关于直线x=1的对称点, 你能发现它们坐标之间分别有什么关系吗? 点(x, y)关于直线x=1对称的点的坐标为(2-x, y)
D(6,5) F(3,3) E(6,1) M(-4,-3) N(-4,-7) 如图,分别作出△ABC关于直线x=1(记为m) 和直线y=-1(记为n)对称的图形,它们的对应点的坐标之间分别有什么关系? m Y • 如图: A(-4,5) B(-1,3) C(-4,1) x X O n G(-1,-5) 点(x, y)关于直线x=1对称的点的坐标为(2-x, y)关于直线y=-1对称的点的坐标为(x, -2-y) 点(x, y)关于直线x=m对称的点的坐标为(2m-x, y),关于直线y=n对称的点的坐标为(x, 2n-y)
归纳:若两点(x1,y1)、(x2,y2)关于 直线 x=m对称,则; 类似: 若两点(x1,y1)、(x2,y2)关于直线y=n对称,则 ; y1=y2 (m= ) X2=2m-x1 x1=x2 y2=2n-y1 (n= )
A P C B 1.如图,△ABC中,边AB、BC的垂直平分线交于点P。 (1)求证:PA=PB=PC。 (2)点P是否也在边AC的垂直平分线上呢?由此你能得出什么结论? 结论:三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
4.利用轴对称变换作图: 如图:要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道什么地方,可使所用的输气管道线最短? B A L P
利用轴对称变换作图: 1.有A、B、C三个村庄,现准备要建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置。 A C B
A· M N E B 1. 如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直) • .
作法:1.将点B沿垂直与河岸的方向平移一个河宽到E,作法:1.将点B沿垂直与河岸的方向平移一个河宽到E, 2.连接AE交河对岸与点M, 则点M为建桥的位置,MN为所建的桥。 证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE, 所以A.B两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD处,连接AC.CD.DB.CE, 则AB两地的距离为: AC+CD+DB=AC+CD+CE=AC+CE+MN, 在△ACE中,∵AC+CE>AE, ∴AC+CE+MN>AE+MN, 即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD处,AB两地的路程最短。 A· M C N D E B
a A B · · D C E 2. 如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点, 作法:作点B关于直线a的对称点点C,连接AC交直线a于点D,则点D为建抽水站的位置。 证明:在直线a上另外任取一点E,连接AE.CE.BE.BD, ∵点B.C关于直线 a对称,点D.E 在直线 a上,∴DB=DC,EB=EC, ∴AD+DB=AD+DC=AC, AE+EB=AE+EC 在△ACE中,AE+EC>AC, 即AE+EC>AD+DB 所以抽水站应建在河边的点D处,
某中学七(4)班举行文艺晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?某中学七(4)班举行文艺晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短? 作法:1.作点C关于直线 OA的 对称点点D, 2. 作点C关于直线OB 的对称点点E, 3.连接DE分别交直线OA.OB于点M.N, 则CM+MN+CN最短 D G M O A H • C.. N E B
G D H M O A • C.. N E B 证明:在直线OA上另外任取一点G,连接… ∵点D,点C关于直线OA对称, 点G.H在OA上,∴DG=CG, DM=CM, 同理NC=NE,HC=HE, ∴CM+CN+MN=DM+EN+MN=DE, CG+GH+HC=DG+GH+HE, ∵DG+GH+HE>DE(两点之间,线段最短), 即CG+GH+HC>CM+CN+MN 即CM+CN+MN最短
4. 如图:C为马厩,D为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线, 作法:1.作点C关于直线 OA的 对称点点F, 2. 作点D关于直线OB 的对称点点E, 3.连接EF分别交直线OA.OB于点G.H, 则CG+GH+DH最短 F G O A · C H D · E B
F G M O A H · C N D · E B 证明:在直线OA上另外任取一点G,连接… ∵点F,点C关于直线OA对称,点G.M在OA上,∴GF=GC,FM=CM, 同理HD=HE,ND=NE, ∴CM+MN+ND=FM+MN+NE=FE, CG+GH+HD=FG+GH+HE, 在四边形EFGH中, ∵FG+GH+HE>FE(两点之间,线段最短), 即CG+GH+HD>CM+MN+ND即CM+MN+ND最短
4、如图,在等腰直角三角形ABC中,∠ACB=90°,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF,4、如图,在等腰直角三角形ABC中,∠ACB=90°,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF, (1)求证:AD ⊥CF (2)连接AF,试判断△ACF的形状,并说明理由。 C D F B A E F
C E A B D 5.如图,在Rt△ABC中,∠C=90,DE是AB的垂直平分线,连接AE,∠CAE:∠DAE=1:2,求∠B的度数。
A D E B 6.如下图△ABC中,AC=16cm,DE为AB的垂直平分线, △BCE的周长为26cm,求BC的长。 C
7.如图:在△ABC中,DE是AC的垂直平分线,AC=5厘米,△ABD的周长等于13厘米,则△ABC的周长是。7.如图:在△ABC中,DE是AC的垂直平分线,AC=5厘米,△ABD的周长等于13厘米,则△ABC的周长是。 18厘米 A E C B D
三.(等腰三角形)知识点回顾 1.等腰三角形的性质 ①.等腰三角形的两个底角相等。(等边对等角) ②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一) 2、等腰三角形的判定: 如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
四.(等边三角形)知识点回顾 1.等边三角形的性质: 等边三角形的三个角都相等,并且每一个角都等于600。 2、等边三角形的判定: ①三个角都相等的三角形是等边三角形。 ②有一个角是600的等腰三角形是等边三角形。 3.在直角三角形中,如果一个锐角等于300,那么它 所对的直角边等于斜边的一半。
练习: A D C B 1、如图,在△ABC中,AB=AC时, (1)∵AD⊥BC ∴∠ ____= ∠_____;____=____ (2) ∵AD是中线 ∴____⊥____; ∠_____= ∠_____ (3) ∵ AD是角平分线 ∵____ ⊥____;_____=____ BAD CD CAD BD BAD AD BC CAD AD BC BD CD
2、“有一个等腰三角形的两条边长分别是4cm和8cm,则周长为2、“有一个等腰三角形的两条边长分别是4cm和8cm,则周长为 20cm
700,700 或 400,1000 3、若等腰三角形的一个角为400,则另外两个角的度数为
4、已知,如图: AB=AC AD=DC=BC则∠A= 360 A D C B
5、已知,如图AB=AB=CD AD=BD则∠BAC= 1080 A B C D
课堂练习: 1、哪个在镜子中的像跟原来的一样?(直线表示进镜子、垂直放置在纸条前) 口 木 E 目 人 晶 S N 中 田 ★ ★ ★ ★ ★ ★ ★
26cm 6、如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果BC=10cm,那么△BCD的周长是_______cm. A E D C B
A C B Q P 7、如图,P、Q是△ABC边上的两点,BP=PQ=QC=AP=AQ, 求∠BAC的度数。
6、等腰三角形的一个角为100°,底角为_____ A D E B 7、等腰三角形的周长为16cm,腰比底长2cm,则腰长为_______ 8、等腰三角形的一边长为3cm,另一边长为8cm,则它的周长是。 9、如下图△ABC中,AC=16cm,DE为AB的垂直平分线, △BCE的周长为26cm,求BC的长。 C
作业布置: 已知,如图:△ABC中 AB=AC E为AC延长线上的一点且CE=BD DE交BC于F 求证:DF=EF (提示:过D作DG∥AE交BC于G 证△DFG≌△EFC即可) A D C B F G E