1 / 53

Redox, Kinetic, and Biological Necessities to Create an Effective Metalloenzyme-mimetic James D. Crapo, M.D.

Sunrise Free Radical School. Redox, Kinetic, and Biological Necessities to Create an Effective Metalloenzyme-mimetic James D. Crapo, M.D. Free Radical-Mediated Pathologies. Normal Metabolism, Aging Chemical Hyperoxia Ischemia-Reperfusion Inflammation Autoimmune Cancer. Antioxidants.

patrice
Download Presentation

Redox, Kinetic, and Biological Necessities to Create an Effective Metalloenzyme-mimetic James D. Crapo, M.D.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sunrise Free Radical School Redox, Kinetic, and Biological Necessities to Create an Effective Metalloenzyme-mimetic James D. Crapo, M.D.

  2. Free Radical-Mediated Pathologies • Normal Metabolism, Aging • Chemical • Hyperoxia • Ischemia-Reperfusion • Inflammation • Autoimmune • Cancer

  3. Antioxidants Efficiency a Tocopherol Non Enzymatic Ascorbate 1 β Carotene NAC Enzymatic Superoxide Dismutases Catalase 1,000 – 10,000 Metalloenzyme Mimetics 1,000 – 10,000 Mimetics

  4. + N N N N N + Mn N N N N N N O O + M n Mn + + N N N N N N C H O O C H 3 3 Salen Mimetic Macrocylic Mimetic [EUK-134] [M-40403] N N + meso-Porphyrin Mimetic Several Classes of Catalytic Antioxidants

  5. Metalloenzyme Mimetic

  6. The Redox Potentials for the Half Reactions of the Dismutation of Superoxide and Superoxide Dismutases E 1/2 (NHE) -0.33 +0.94 +0.3 O2-. O2 + e- O2-. + 2H+ + e- H2O2 MnSOD CuZnSOD 2O2-. + 2H+ H2O2

  7. Mn TBAP

  8. Metalloporphyrin Antioxidant MimeticsEfficacy of First Generation - TBAP Cardiovascular Cardiomyopathy Zymoson-Induced Shock Joint Carregeenin Paw Edema Lung Paraquat Injury Carregeenin Inflammation Bleomycin-Induced Fibrosis CNS Kainate-Induced Seizures Cerebral Vasoconstriction Spinal Cord Injury Liver Ischemia-Reperfusion Steatosis Acetaminophine Injury Fas-Mediated Acute Injury

  9. R N N + Mn R R N N R Development of an Antioxidant Mimetic Modify side chains Modify charge Modify redox potential Alter backbone Change metal Aeol-10150

  10. Metals • Manganese • Iron • Copper • Cobalt • Nickel

  11. Mn TM-4-PyP

  12. The Redox Potentials for the Half Reactions of the Dismutation of Superoxide and Superoxide Dismutases E 1/2 (NHE) -0.33 +0.94 -0.23 +0.06 +0.3 O2-. O2 + e- O2-. + 2H+ + e- H2O2 MnTMPyP MnSOD CuZnSOD MnTBAP 2O2-. + 2H+ H2O2

  13. + R , , , = N C H 1 2 3 4 3 R R 2 1 N R , , , = 1 2 3 4 N Mn N N + C H 3 N R R 3 4 R , , , = 1 2 3 4 N + H C 3 The “Ortho Effect” SOD Activity units/mg 225 336 10,648

  14. N + N N + N + Mn N + N N + N MN TE-2-PyP Molecular Formula: C48H56N8Cl5Mn Molecular Weight: 977 5Clˉ

  15. Antioxidant Activities Lipid ONOO SOD peroxidation scavenger Catalase (U/mg) IC50 (M) (M-1S-1) % activity CuZn SOD 5,100 15 — — Mn TBAP 179 29 3.0x105 0.42 Mn TM-4-PyP 550 16 1.8x108 0.45 MnTE-2-PyP 8,500 1 1.0x107 1.41

  16. MnTM-2,5-IP

  17. Antioxidant Activities Lipid ONOO SOD peroxidation scavenger Catalase (U/mg) IC50 (M) (M-1S-1) % activity CuZn SOD 5,100 15 — — Mn TBAP 179 29 3.0x105 0.42 Mn TM-4-PyP 550 16 1.8x108 0.45 MnTE-2-PyP 8,500 1 1.0x107 1.41 MnTM-2,5-IP 14,800 1 1.0x106 1.67

  18. The Redox Potentials for the Half Reactions of the Dismutation of Superoxide and Superoxide Dismutases E 1/2 (NHE) MnTE-2-PyP MnTM-2,5-IP -0.33 +0.94 -0.23 +0.06 +0.3 +0.23 +0.33 O2-. O2 + e- O2-. + 2H+ + e- H2O2 MnTMPyP MnSOD CuZnSOD MnTBAP 2O2-. + 2H+ H2O2

  19. Antioxidant Properties of Metalloenzyme Mimetics • Attenuate O2- Mediated Injury • Attenuate H2O2 Mediated Injury • Prevent Formation of Lipid Peroxides • Scavenge ONOO-

  20. Pharmacokinetics • Route • Uptake • Distribution • Half Life • Plasma • Tissue

  21. Mouse Plasma Concentrations ofMnTM-2,5-IP (iv bolus) 100000 T ~44 minutes 1/2 10000 1000 MnTM-2,5-IP (ng/ml) 30mg/kg 100 10mg/kg 3mg/kg 10 1mg/kg 1 0 1 2 3 4 5 6 7 Hours

  22. MnTM-2,5-IP Steady-State From Mini-Osmotic Pump (1.12 mg/kg loading dose followed by 1.8 mg/kg/hr infusion for 24 hours) Steady-State 1000000 (ng/g or ng/ml) kidney 34,100 liver 16,300 10000 MnTM-2,5-IP serum 2,000 (ng/g or ng/ml) lung 1,600 heart 1,000 100 brain 90 1 0 4 8 12 16 20 24 Hours

  23. MnTM-2,5-IP Clearance from Mini-Osmotic Pump(1.12 mg/kg loading dose followed by 1.8 mg/kg/hr infusion for 24 hours) 1000000 estimated half-life (hrs) kidney 140 10000 liver 136 MnTM-2,5-IP (ng/g or ng/ml) lung 83 heart 96 100 brain 49 serum 8 1 0 24 48 72 96 Hours

  24. Pharmacokinetics of MnTM-2,5-IP in Rats(24 mg/kg, SC) T ~ 3 hrs 100000 1/2 Time to peak ~ 6 hrs Effective dosing interval ~ 9 hrs Plasma MnTM-2,5-IP (ng/ml) 10000 1000 0 2 4 6 8 10 12 14 Hours

  25. Toxicity • MTD • Organ specific • Mutagenicity • Cardiovascular

  26. MnTM-2,5-IPToxicology

  27. Mechanisms • Antioxidant - targeted

  28. EC-SOD in Large Elastic Pulmonary Artery 50 μ

  29. EC-SOD in Muscular Pulmonary Artery 50 μ

  30. EC-SOD in Small Arteriole

  31. Immunolocalization of EC-SOD

  32. CuZn SOD Concentrations in Hepatocyte Organelles Organelles mg SOD/cm3 Nucleus 0.71 ± 0.06 Cytoplasmic Matrix 1.36 ± 0.30 Mitochondria 0.21 ± 0.01 RER 0 SER 0.02 ± 0.01 Golgi Apparatus 0 Lysosomes 5.81 ± 1.55 Peroxisomes 0.27 ± 0.08

  33. Distribution of CuZn SOD Molecules in Hepatocyte Organelles Organelles # μm3 Nucleus 13,300 Cytoplasmic Matrix 25,500 Mitochondria 3,900 SER 400 Lysosomes 108,900 Peroxisomes 5,000

  34. 800 700 600 500 400 Units/g lung 300 200 100 0 CuZn SOD Mn SOD EC-SOD Human SOD Total Activity in Lung

  35. 50 45 40 35 30 Units/cm3 tissue 25 20 15 10 5 0 CuZn SODin Cells MnSOD inMitochondria EC-SOD inInterstitium SOD Activities in Specific Compartments

  36. 2500 9000 8000 2000 7000 6000 1500 Units/g wet weight 5000 Units/g wet weight 4000 1000 3000 500 2000 1000 0 0 Liver Kidney Heart Brain Lung Liver Kidney Brain Heart Lung Human Human A B CuZn SOD Mn SOD

  37. EC-SOD 600 500 400 Units/g wet weight 300 200 100 0 Liver Kidney Heart Brain Lung Human

  38. Estimated AOE in 70 Kg Human • CuZn SOD – 10-20 gm • Mn SOD 5-10 gm • EC-SOD 1-2 gm

  39. Mechanisms • Antioxidant - targeted • NFκB inhibition

  40. NF-κB • Nuclear Factor-Kappa B • First discovered as an enhancer of B cells (Sen & Baltimore 1986, Cell) • Ubiquitous transcription factor • Shown to be involved in cancer, immune response, redox regulation, apoptosis

  41. NF-κB Pathway Adapted from: www.emdbiosciences.com/html/CBC/NFKB_NFkappaB_IKB_IKK_Pathway_Products.htm

More Related