180 likes | 254 Views
Modeling the phase transformation which controls the mechanical behavior of a protein filament. Peter Fratzl Matthew Harrington Dieter Fischer. Potsdam, Germany. 108th STATISTICAL MECHANICS CONFERENCE December 2012. mussel byssus. whelk egg capsule. i mportant yield.
E N D
Modeling the phase transformation which controls the mechanical behavior of a protein filament Peter Fratzl Matthew HarringtonDieter Fischer Potsdam, Germany 108th STATISTICAL MECHANICS CONFERENCE December 2012
mussel byssus whelk egg capsule importantyield importantyield slow immediate recovery 1) Stiffness 400 MPa 100 MPa 2) Extensibility Relatively high initialstiffness 3) Recovery
Mussel byssal threads Self-healing fibres
yield elastic relaxation „healing“ ~ 24h 1h Mechanical function of Zn – Histidine bonds M. Harrington et al, 2008
Egg capsules of marine whelk Busycotypuscanaliculatus Harrington et al.2012 J Roy Soc Interface
α-helix Raman α β* extendedβ*
Phase coexistence yield Raman intensity XRD intensity α β* stress strain
Co-existenceoftwophasesduringyield Elasticbehaviour W(s) = (k/2) (s – s0)2
Worm-likechain (Kratky/Porod 1949) Moleculewithkinks (Misof et al. 1998) extended phase β* Force f actual length s kink number ν length atrest s0 persistence length lp extended (contour) length L (s > s0)
Relation betweenforce and potential energy: High strain Low strain WLC kink model αphase (elastic) β* phase (entropic)
fa All molecularsegments in thefiberseethe same force mechanicalequilibrium: Completeanalogytothermodynamicequilibrium:
WLC and kinkmodelnearly identical on thisscale Total energy internal energy work of appliedforce αstablestabilitylimitα + β* sclow
Relation toexperiment Whatcanbemeasured (by in-situ synchrotron x-raydiffraction): Force as a function of meanelongation The criticalforceatyield (α-β* coexistence) The yieldpoint (start of α-β* coexistence) Reconstruct W(s) Number of molecules per cross-sectionalarea
Phase transformationkinetics in analogytopseudoelasticity in NiTi thermodynamicdrivingforce kineticequation fraction of β* segments in thefiber Hypothesis: loadatcontant stress rate, (loading) and (unloading) Based on: R. Abeyaratne, J.K. Knowles, Evolution of Phase Transitions – A Continuum Theory (Cambridge University Press, Cambridge, 2006)
Slow or fast stretching Blue: Red: Green: WLC Equilibrium line
mussel byssus whelk egg capsule Cooperativity of manyweakbonds phasetransition