1 / 27

 Radiative Decays

 Radiative Decays Scalars: f 0 , a 0  f 0   0  0   a 0 g   0  Pseudoscalars:  ,  f   g  p + p - p 0 g  p + p - 3 g f   g  p + p -  g  p + p - 3 g A. Antonelli (Laboratori Nazionali di Frascati dell’INFN) XXII Physics in Collision

paul
Download Presentation

 Radiative Decays

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1.  Radiative Decays • Scalars: f0, a0 •  f000 •  a0g0 • Pseudoscalars:  ,  • f   g p+ p- p0 g p+ p- 3 g • f   g p+ p-  g p+ p- 3 g A. Antonelli (Laboratori Nazionali di Frascati dell’INFN) XXII Physics in Collision June 20-22 2002 Stanford

  2. f0(980) Narrow meson with vacuum quantum numbers • First seen in p-p np+p- • I=0 S-wave pp ppelastic scattering • cross section shows a dip close to KK threshold. • Similarly from p-p nK+K-,K0K0 the sharp onset of inelasticity shows a large coupling to KK • J/Y decays (MarkIII, DM2, Bes) BR(J/Y Ff0) =(3.2  0.9)10-4 BR(J/Y wf0) =(1.4  0.5)10-4 Evidence for strange quarks content in the f0 • Clear peak in D sp+p-p (FNAL-E791) not seen in Dp+p-p • Produced in central pp collisions (WA102 (CERN) • G (f0gg) ~ 0.3 KeV measured from gg interaction • G ~ 60 MeV

  3. a0(980) • First seen in Kp hpS • Precise data from Crystal Barrel and OBELIX: pp00, 0,KKp • Recent data from E853:-p+-n and -p0n • And from WA102: a0 production in central pp collisions • G (a0gg) ~ 0.25 KeV measured by Crystal Ball/Jade • G ~ 70 MeV 2 scalar mesons close in mass with small visible width and small gg coupling

  4. Br(f0) 5  10-5 10-4 10-5 Br(a0) 10-5 10-4 10-5 Interpretations • S = f0(980) (I=0) , a0(980) (I=1) not easily interpreted as qq states: • M , Gtotal , Ggg too small • Their KK coupling suggest a large ss content • f0 ss interpretation: difficult to understand f0/a0 mass degeneration • (quark-gluon transition do not help: f0 weakly coupled to gluon • BR(J/Y gf0) <1.4x10-5 • Possible interpretations: qqqq states (Jaffe ’77) KK molecules (Weinstein, Isgur ’90) • Br(f0(980)) and Br(a0(980)) and mass spectra are sensitive to the nature of these scalar particles • Gribov suggested the existence of peculiar mesons with vacuum quantum numbers near the proton mass to explain quark confinement

  5. S(0++) • Pub. data from: KLOE@DAFNE, SND CMD-2 @ VEPP-2M • 5.3x107 2x107 2x107 F decays • Results on • f0 ; f000  5  final state • (f0+-  large background from Initial State • Radiation and Final State Radiation (interference)) • a0 ; a00  (39%)  5  final state • “ “ +-0 (23%)  2 tracks +5  • (KLOE: first observation)

  6. 00 • Signal cross section (nb) • different amplitudes contribute to00 final state • (f0+00)00 ~0.35 • (+ possible contribution from  ,00) • (s meson seen by: Fermilab E791,BES) • Background: • e+e-0 00 dominant ~ 0.5 • 0 ~ 0.13 (2 accidentals/g splittings) (17.0) •  000 (2 g lost) (14.0)

  7. 1+cos2   0 0 KLOE: 00 • exactly 5 prompt g with Eg> 700 MeV (reject KLKS neutrals) • Cut on|M - M| < 5(M) • Veto on events with: • |M - M| < 3(M) • Constrained Kinematic fit •  3102 events • <> = 40% • Estimated background (~ 20%): • e+e-0 00 33924 • 0 16616 •  000 15912

  8. SND&CMD-2: 00 SND: 712 evts after cut <> ~ 20% 419  31 signal events CMD-2: 268  27 signal events SND CMD-2 CMD-2 Mpp>800 MeV 0 + 0 cos

  9. Fit to M spectrum • Contributions: • 1) f0 ; f000 • 2)  ; 00 • 3) 00 ; 00 • (expected Br=1.2  10-5 Bramon-Grau-Pancheri, • Phys.Lett.B283(1992),416 • = 1.8  10-5 Achasov-Gubin, (fit to SND data) • Phys.Rev.D63(2001)094007)

  10. gKK gf0KK gf0 0 K+ f0 K- 0 Model • Scalar term: (S=f0,) radiative g • f0 term from kaon loop : • (Achasov-Ivanchenko, • Nucl.Phys.B315(1989)465) f g(m) satisfy gauge invariance ~ Eg at low g energy, act as f.f. at higher Eg

  11. radiative g f  0 g 0 Model •  term point-like coupling • (Gokalp,Yilmaz,Phys.Rev.D64(2001)053017) • Decay width: • Inverse propagators: Df0 with finite width corrections, • from Achasov-Ivanchenko, Nucl.Phys.B315(1989)465 • D = Breit-Wigner with M=478 MeV and =324 MeV • (Fermilab E791-Phys.Rev.Lett.86(2001)770) •  + interference term parameterizations from Achasov-Gubin, • Phys.Rev.D63(2001)094007

  12. (bckg subtracted) KLOE:Fit results Fit A : only f0 + 00 + interf. term Fit B : (f0 + ) + 00 + interf. term  contribution negligible  fixed to 0 M=478 MeV and =324 MeVfixed theoretical function folded with: resolution, efficiency and normalized by L and sF f0 +  f0 A B 2/ndf 109.5/33 43.2/32 Mf0 (MeV) 9624 973 1 g2f0KK/(4) 1.290.14 2.79 0.12 (GeV2) g2f0KK/g2f0 3.220.29 4.000.14 g — 0.060 0.008 Br(00) (1.09  0.03  0.05)  10-4 From fit B

  13. KLOE:Fit results • Large f0- destructive • interference at M < 700 MeV • By integrating over the f0 and  • curves: • Br(f000) = (1.49  0.07)  10-4 • Br(00) = (0.28 0.04)  10-4

  14. SND: Fit results 2x107 F decays • 2 Fit: f0 + 00 • f0 • Fit including the s • (fixing ms=600 MeV and Gs=400 MeV) • neglegible sg contibution • f0 by kaon loop model • f0 ,00interf. termapprox. • formula • Br (00 ; 00 )=1.2  10-5 f0 + 00 2/ndf 3/14 Mf0 (MeV) 969.84.5 g2f0KK/(4)(GeV2) 2.470.73 g2f0KK/g2f0 4.60.8 (degrees)18036 • Neglecting00 contribution 2 is good but the fit shows a systematic deviation from mass spectrum • Fitting with point-like model 2/ndf = 28/14

  15. SND: Fit results Point-like model does not fit data kaon loops model reproduces well the mass spectra data well fitted by f0 + 0 s contribution not necessary even if not completely excluded • Gokalp-Yilmaz(Phys.Rev.D64(2001)053017) reproduce the SND spectrum with f0 +  + , with M=478 MeV , =324 MeV and a large f0 ,destructive interference Br(00) (1.220.10 0.06)  10-4 SND has not much sensitivity in the s region

  16. CMD-2: Fit results 2x107 F decays • Fit: assuming mass spectrum dominated byf0 • f0 by kaon loop model • possible sg and00contribution estimated to be ~15% and included in systematic error .... kaon loop --- narrow pole f0 2/ndf 1.5 Mf0 (MeV) 9754 6 g2f0KK/(4)(GeV2) 1.480.32 g2f0KK/g2f0 3.610.62 Br(00) (1.080.170.09)  10-4 Integral over the spectrum

  17. Comparison between experiments F decays other KLOE SND(1) CMD-2(1) WA102(2) E791(3) Mf0 (MeV)9731 9695 9757 9878 9774 g2f0KK/(4) 2.790.12 2.470.73 1.480.32 0.400.06 0.020.05 (GeV2) g2f0KK/g2f04.000.14 4.60.8 3.610.62 1.630.46 g0.060 0.008 Br(00)104 0.960.05 1.030.09 0.920.09 Mpp>700 MeV • f0 and  only , without  • WA102 (CERN) : f0 production in central pp collisions(g2f0KK directly measured) • E791 (Fermilab) : f0 production in D+S-++

  18. Data • — MC Events Events M (MeV) KLOE: 05 • Data • — 00 • —000  • —000 • — • same5 gsample as for00 • 00rejected by proper g pairing • Constrained kinematic fit •  916 events • <> = 33%  60736 events after bckg subtraction • estimated background (30%): • 00 15216 • e+e-0 00 546 •  000 9810 •   52 1+cos2 cos

  19. KLOE:0 +-5 M (MeV/c2) |cos| • No backgrounds from same final state: 2 Tracks + 3/4 g, 2 Tracks + 6 g (0, , KSKL) • Minv(p+p-) < 425 MeV to reject KSp+p- • 1 vertex in IR with 2 tracks, 5 prompt  • constrainedkinematic fit •  197 selected events • <>=19% • 44 background events fit 1 1+cos2 fit 2 fit 2 Clear po and h peaks MC signal reproduces data

  20. KLOE: Fit results • Contributions: • a0 ; a00 (kaon loops) • 00 ; 0 • (expected Br = 0.54  10-5 (Bramon, Grau, Pancheri,Phys.Lett.B283(1992),416) • Combined fit, relative normalization fixed to • Br()/Br(+-0) Free parameters: g2a0KK, ga0/ga0KK, Br(000) Ma0 = 984.8 MeV (PDG value) - fixed 2/ndf 27.2/25 g2a0KK/(4) (GeV2) 0.40  0.04 ga0/ga0KK1.35  0.09 Br(000) (0.5  0.5)  10-5 By integrating over the whole spectrum: Br(a00)= (7.4  0.7)  10-5

  21. SND&CMD-2: 0 • 2x107 F decays • 39 evts after cut • <> ~ 2.3% • 35 6 signal events • Fit: assuming mass spectrum dominated bya0 • Ma0 (MeV) 995 +52-10 • g2a0KK/(4) (GeV2) 1.4+9.4-0.9 • ga0/ga0KK 0.750.52 • 2x107 F decays • 80 22 signal events • <> ~ 4% • No fit to mass spectrum SND Br(h0) (0.88  0.14  0.09)  10-4 CMD-2 Br(h0) (0.9  0.24  0.10)  10-4

  22. Comparison between experiments other F decays KLOE SND CMD-2 E852(1) Crystal (2) Barrel Ma0 (MeV)984.8 (fixed) 995+52-10 -- 9913 1000 2 g2a0KK/(4) 0.400.04 1.4+9.4-0.9 -- (GeV2) ga0/ga0KK 1.350.09 0.750.52 -- 1.050.06 0.93—1.07 Br(h0)1057.4  0.7 8.8 1.7 9.0 2.6 ---- ---- (1) E852 (BNL) : a0 production in -p+-nand -p0n at 18.3 GeV/c (2) pp00

  23. Summary of couplings • Comparison with predictions based on the kaon loop model with point-like coupling • of the scalars to kaons (Achasov-Ivanchenko) KLOE f0model qqqq g2f0KK/(4) 2.790.12 “super-allowed” “OZI-allowed” “OZI-forbidden” (GeV2) (~2 GeV2) (~0.3 GeV2) gf0 /gf0KK 0.500.01 0.3—0.5 0.5 2 a0model qqqq g2a0KK/(4) 0.400.04 “super-allowed” “OZI-forbidden” (GeV2) (~2 GeV2) ga0/ga0KK 1.350.09 0.91 1.53 • f0 parameters are compatible with qqqq model • a0 parameters seem not compatible with qqqq model

  24. Pseudoscalars:f   g ,  g • Br(  ’) can probe the gluonic content of the ’: • theoretical predictions range from 2x10-4 down to ~10-6 in case of significant gluonic content. • [N.Deshapande and G. Eilam., Phys. Rev. D25 (1980) 270, J. L. Rosner, Phys. Rev. D27 (1983) 1101, • F.E.Close, The DAFNE Physics Handbook Vol. II, Frascati 1992] • The mass eigenstates , ’ can be related to the SU(3) octet-singlet • states 8, 0 through the mixing angle p, whose value has • been discussed many times in thelast 30 years: both from theoretical • predictions and from phenomenologicalanalyses it varies from -23° to -10°. • [A. Bramon et al., Eur. J. C7 (1999) , A. Bramon et al., Phys. Lett. B503 (2001 ) 571 ] • [ F.J. Gilman, R. Kauffman, Phys. Rev. D 36 (1987) 2761] • Recent developments in ChPTand phenomenologicalanalyses suggest the need to • use two mixing parameters 8and0in the octet-singlet basis. • [H. Leutwyler, Nucl. Phys. Proc. Suppl. 64 (1998) 223, R. Kaiser and H. Leutwyler, hep-ph/9806336, • P. Ball, J. M. Frere and M. Tytgat, Phys. Lett. B365 (1996) 367] • In the flavour basis the mixing can be descibed by one angleFP(Fq  Fs  Fp) and can be extracted from the ratio of the amplitudes of   ’ and    • [T. Feldmann,P. Kroll and B. Stech, Phys.Lett.B449 (1999) 339, T. Feldmann Int. J. Mod. Phys. A15(2000)]

  25. h invariant mass (MeV) KLOE:f   g ,  g f   g p+ p- p0 g p+ p- 3 g BR 3 ·10 - 3 f   g p+ p-  g p+ p- 3 gBR 2 ·10 - 5 The main background comes from:f  KS KL , f  p + p- p0 R = BR(f hg) / BR(f hg) R=( Nh eh / Nheh )•RBR=(4.7 ± 0.5± 0.3)•10-3 Using PDG’00 for BR(f hg) : BR(f hg) =(6.1 ± 0.6 ± 0.4)•10-5 •  128  events • <> = 23% • 120 ±12 after bck subtraction

  26. |h> = Xh|uu+dd>/2 + Yh|ss> + Zh|glue> |h> = Xh|uu+dd>/2 + Yh|ss> + Zh|glue> 3 G(h rg)mh2-mr2mw G(w  p0g)mw2-mp2mh _ ~ 3 X2h · · 4) 3 2 G(h gg)1mh G(p0 gg)9mp0 5) · = 5 Xh + 2Yh fp f8 Z2h= 0.06 + 0.09 - 0.06 |Yh|= cos P KLOE:f   g ,  g Using the Bramon or the Feldman parametrization we can relateR to the mixing angle in the flavour basis: FP= (42.2 ±1.7 )° gluonium content <15%

  27. Conclusions • The data from the f radiative decays are fundamental in clarifying • the nature of scalar mesons. • The branching ratios00,0 and the f0,a0coupling • constants have been measured with a better accuracy by KLOE • and are in agreement with VEPP-2M results. • Best measurement of BR(f   g) and / mixing angle • There is still work to do in this field and more data are expected • from KLOE and from other experiment (D decays etc) • KLOE analysis on 2001 data (190 pb-1) is in progress, • (results on f0+- are also expected), other 300 pb-1 expected • by the end of 2002

More Related