170 likes | 266 Views
Most uniform path partitioning and its use in image processing Mario Lucertini, Yehoshua Perl, Bruno Simeone, Discrete Applied Mathematics 42(1993)227-256 報告人 王弘倫. Introduction. Most uniform path partitioning (L, U)-partitioning Minimum (L, U)-partitioning Maximum (L, U)-partitioning
E N D
Most uniform path partitioning and its use in image processing Mario Lucertini, Yehoshua Perl, Bruno Simeone, Discrete Applied Mathematics 42(1993)227-256 報告人 王弘倫
Introduction • Most uniform path partitioning • (L, U)-partitioning • Minimum (L, U)-partitioning • Maximum (L, U)-partitioning • (L, U)-partitioning into p components Each can be solved in O(n), except MUP.
A greedy method Minimum (9, 13)-partitioning 11 2 4 4 5 6 11 11 2 4 4 5 6 11 illegal edge 11 2 4 4 5 6 11
Preprocessing 4-5-3-2-6-4-3-5-2-1-1-1-1-5-6-11 U=13, L=9 1.總重=11, Q=(11) 2.總重=17>U, Q=(11,6) 總重=17-11=6<L 6需與前一點合併 3.總重=11, Q=(11(6+5)) 4.總重=12, Q=(11,1) 5.總重=13, Q=(11,1,1) 11
Preprocessing(2) The result of preprocessing: 4-8-2-10-3-9-1-1-11-11 4-5-3-2-6-4-3-5-2-1-1-1-1-5-6-11 After the preprocessing, the greedy method works. stable
Lemma Assume that edges ei =(i,i+1) and ej =(j,j+1), i <j, are both illegal in the path Q. Then: • ej remains illegal in the path Q’ obtained by compressing the vertices i and i+1. • ei remains illegal in the path Q’’ obtained by compressing the vertices j and j+1.
Lemma There exists one and only one stable compression of the given path. Ex: P= 11-6-5-4-7-8-5, U=13, L=9 illegal edge
Lemma (continue) P= 11---6-5---4-7---8-5 P P65 P47 P85 P65,47 P65,85 P47,85 P65,47,85
Theorem The greedy procedure outputs an (L,U )-partition with the smallest number of components.
Partition into p components Given L=3, U=5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 Minimum (3,5)-partition into 6 components 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 Maximum (3,5)-partition into 9 components 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 (3,5)-partition into 7 components 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 3 (3,5)-partition into 8 components
Theorem For an arbitrary p such that r<p<s, there exists always an (L,U)-partition of the path Q into p components. Furthermore, there exists an (L,U)-partition of Q into p classes, which has the following properties: (1) is an “hybrid” of a max-partition and of a min-partition, in the sense that each cut of is either a max-cut or a min-cut(or both). (2) There is a vertex m such that all cuts of on the left of m are max-cuts, while all cuts of on the right of m are min-cuts.
Theorem 給定一介於min-partition和max-partition間的數p,一定可找到一合法的(L,U)-partition 將此path分成p份, 且具有以下性質: • 由min-cut及max-cut混合而成. • 在path中存在一點m, 其左邊均為max-cut, 右邊為min-cut.
How to find m ? • m = max{i : i S } • S = {i : i =p-r and edge (i -1,i ) bears a max-cut}.
Most uniform partitioning U W W/p L O W/p W
Example Path 10 49 2 7 50 3 50 10 10 10 , p=7 Max-min partition (L=10, U=57) 10 49 2 7 50 3 50 10 10 10 Min-max partition (L=3, U=50) 10 49 2 7 50 3 50 10 10 10 Most uniform partition (L=9,U=53) 10 49 2 7 50 3 50 10 10 10
Example (L, U)-partitioning where L=3 , U=6 1 2 5 3 3 3
Example Minimum (3, 6)-partitioning Maximum (3, 6)-partitioning 1 2 5 3 3 3 1 2 5 3 3 3