1 / 25

Granular flows under the shear

Granular flows under the shear. Hisao Hayakawa* & Kuniyasu Saitoh Dept. Phys. Kyoto Univ., JAPAN *e-mail : hisao@yuragi.jinkan.kyoto-u.ac.jp at Recent progress in glassy dynamics on September 29. Outline of this talk. Introduction: What is granular material?

pbland
Download Presentation

Granular flows under the shear

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Granular flows under the shear Hisao Hayakawa* & Kuniyasu Saitoh Dept. Phys. Kyoto Univ., JAPAN *e-mail : hisao@yuragi.jinkan.kyoto-u.ac.jp at Recent progress in glassy dynamics on September 29

  2. Outline of this talk • Introduction: What is granular material? • Characteristics of granular flows: Is there a liquid phase? • Simulation of granular flow • Metastable dynamics and the plug flow • The description based on the kinetic theory for the steady state • Conclusion and discussion

  3. I. Introduction: What is granular material? – force chains under the shear- • Strong fluctuations • Concentration of stresses in small number of particles • collapse of a silo by stress concentration!

  4. The jamming of granular particles • It is known that there is an analogy between glass transition and the jamming. load Inverse density

  5. II. Characteristics of granular fluid • They have different properties from conventional flows • Non-Newtonian constitutive equation • Flow is heterogeneous and it strongly depends on boundary conditions. • There are many cases which coexist both flow regions and glassy (solid-like) regions. • Theoretical treatments are mainly based on the kinetic theory for gasesThere are not so many phenomena those can be explained by the theory. • There are a lot of phenomenology but the range of applications is limited.

  6. A fundamental question • Is there a liquid phase separately from the gas phase? • No definite answer • No: there is only the dense gas phase because no attractive interaction is included (my talk). • Yes: the behavior of dense granular flow has common properties different from the dense gases (Pouliquen’s talk)

  7. Purpose of this research • To extract the essence of granular flows, we focus on the simple shear flow for relatively dilute granular gases without the influence of gravity. • We do not introduce any particular liquid phase. • We are interested in the relaxation dynamics and the steady state. • We examine the validity of the kinetic theory in the heterogeneous system. • We also investigate the effect of the tangential contact force and the rotation of particles in granular flows.

  8. Previous Studies on Granular Gases • Flows on slopes (or inclined planes) • There are many experiments and theories. • The system is anisotropic under the influence of the gravity. • Freely Cooling Processes • There are many theories and simulations but no experiments. • Most of simulations do not take into account the rotations of particles. • Simple Shear Flows (Couette flows) • Experiments are limited to high density case . Systems are strongly influenced by the gravity. • Theories( Jenkins, Alam etc) are based on the kinetic theory and applied to dilute case.

  9. Additional characteristics of granular gases • Absence of the standard Green-Kubo formula • The transport coefficient is given by the complicated correlation function • Absence of the fluctuation theorem • The existence of the long-range correlation (in freely cooling states) • Homogeneous state cannot be maintained.

  10. III. Our system of the shear flow • We apply the shear to a system of 2-dimensional granular gas. • No. of particles = 5000, Average Area fraction = 0.12 • Initial condition : The configuration is uniform and velocity distribution obeys Gaussian. Shear speed : U . Shear rate : . (: diameter、  : gravitationalacceleration,) Bumpy boundary condition at sheared wall ( ) Periodic boundary condition at .

  11. Discrete element method ( DEM ) • Elastic force Linear spring(          ) • Viscous force (viscous constant ) • Coulomb friction in the tangential force(     ) • Contact force • represent the relative displacements in the normal and the tangential direction, respectively. • The tangential force causes the rotation of particles.

  12. The time evolution of area fraction ( ) Total energy=Kinetic (translational) Energy+ Rotational Energy • Normal (Without rotation):One peak exists through the time evolution to form a band like cluster. • Tangential (with rotation)   :The are two peaks in the transient dynamics. • Steady states in both systems are similar.

  13. Transient Dynamics Granular temperature X-component of velocity Velocity (x-component) • Transient According to rotational effects of particles, velocity and granular temperature become almost zero in the central region.

  14. Suggestion from the simulation • Even when the average density is not high, there appear dense clusters. • In the dense clusters, the motion of particles are frozen like a glassy state. • The coexistence of the dense region and the dilute region is a typical characteristics of granular flows. • However, as will be shown, it is surprised that we can use the kinetic theory.

  15. IV. The steady solution of fluid equations • With the aid of fluid equations derived from the kinetic theory by Jenkins & Richman (1985) we have obtained the steady solution of Couette flow for the case without the rotation. • We also obtain the steady solution for the case with the particles’ rotation based on the idea by Yoon & Jenkins (2005) . The effects of rotations(friction constant ) can be absorbed with the introduction of the effective restitution constant.

  16. Theoretical treatment of the steady problem • We can derive a set of fluid equations based on the dense gas kinetic theory. (Enskog+dissipation) • Equations include the conservations of the mass, the linear momentum and the energy.

  17. The equation of in the steady solution

  18. Details : radial distribution function : shear viscosity • From we can obtain the velocity and granular temperature. : thermal conductivity :Coefficient of density gradient in heat current

  19. Steady state(without rotation) Granular Temperature • Agreement between the theory and the simulation is good. Velocity (x-component) We obtain the semi-quantitative results.

  20. Steady state(with rotation) Granular Temperature • The disagreement of the area fraction between the simulation and the theory is enlarged. But not bad! Velocity (x component) The effects of rotation of particles can be absorbed in the effective restitution constant.

  21. Discussion about high shear and elastic limit • Kinetic Theory in strong shear stress in the elastic limit of e=1 No steady solution • DEMWe cannot reach a steady state  (The energy increases with time.) leads to break down of the steady solution.

  22. V. Summary • According to the rotation, we find that a characteristic behavior appears in the transient dynamics. • The motion of particles are frozen in the region between two dense clusters. • In the steady states, qualitative behaviors are common with regardless to the existence of the rotation of particles. • The hydrodynamic variables in the steady state can be described by the kinetic theory. • This is astonishing because the motion of some particles are frozen.=> We may not need the liquid phase.

  23. Perspective • We have to construct a theory to describe dynamics of particles in the metastable state. • We need to improve the theory to describe high density region which may be correction to the kinetic theory. • We need to investigate the effects of system size, because there is a paper to indicate that there are two dense clusters in the transient region if the system size is enough large. • Extension to our theory • High shear case or elastic limit Unsteady states • 3-dimension The comparison with microgravity experiments.

More Related