480 likes | 496 Views
This research explores automated estimation of atmospheric parameters using stellar spectrum analysis techniques like sparse feature extraction and linearly supporting features extraction. The study focuses on the detection, description, and estimation of atmospheric parameters through various methods like LASSO and statistical index schemes. Experimental results on real and synthetic spectra demonstrate significant accuracy.
E N D
Stellar Spectrum Analysis for Automated Estimation of Atmospheric Parameter 李乡儒 2015. 11.28 Collaborators: Ali Luo , Yongheng Zhao, Georges Comte , Fang Zuo, Q.M. Jonathan Wu, Tan Yang, Yongjun Wang, Yu Lu
Contents • Problem, Available Schemes and Objective • Sparse Feature Extraction • Linearly Supporting Features Extraction • Adaptive Basic Structure Elements and Spectral Feature Extraction Xiangru Li, Q.M. Jonathan Wu, Ali Luo, Yongheng Zhao, Yu Lu, Fang Zuo, Tan Yang, Yongjun Wang, 2014, ApJ, 790, 105 X. Li, Yu Lu, G. Comte, Ali Luo, Yongheng Zhao, Yongjun Wang, 2015, ApJS, 218,3 Yu Lu, X. Li, 2015, MNRAS, 452(2): 1394 Tan Yang, X. Li, 2015, MNRAS, 2015, 452, 158
Available Schemes and Objective • Template Matching Method • Statistical Index Scheme • Line Index Method • Physical Interpretability • Robustness • local, sparse
Problem and Objective • Detection • Description • Estimation
SDSS Data 50000, [4088, 9740]K for Teff, [1.015, 4.998] dex for log g, [-3.497 0.268]dex for [Fe/H]
LAMOST Data 33963 [3853.2, 9927] K for Teff, [0.8920, 4.9959] dex for log g, [-2.3280 0.9360] dex for [Fe/H]
Synthetic Data Kurucz’s NEWODF models, SPECTRUM package 18969 [4000, 9750] K for Teff, 45 values, step sizes of 100 K between 4000 and 7500, 205 K between 7750 and 9750 K [1, 5] dex for log g, 17 values, step size of 0.25 dex [-3.6 0.3]dex for [Fe/H], 27 values , step size of 0.2 dex between -3.6 and -1 dex, and 0.1 dex between -1 and 0.3 dex
Sparse Feature Extraction Xiangru Li, Q.M. Jonathan Wu, Ali Luo, Yongheng Zhao, Yu Lu, Fang Zuo, Tan Yang, Yongjun Wang, 2014, ApJ, 790, 105
Detection • LASSO (least absolute shrinkage and selection operator)
Detection 99.74% Re Fiorentin, P., et al. 2007, A&A, 467, 1373
Description and Estimation Point Description (PD) Local Integration (LI)
Experimental Results • On Real Spectra Re Fiorentin, P., et al. 2007, A&A, 467, 1373
Experimental Results • On Synthetic Spectra
Compactness • On Real Spectra 99.74% Re Fiorentin, P., et al. 2007, A&A, 467, 1373
Other typical non-linear estimators Feedforward neural network Generalized Additive Models Multivariate Adaptive Regression Splines Random Forest
Linearly Supporting Features Extraction X. Li, Yu Lu, G. Comte, Ali Luo, Yongheng Zhao, Yongjun Wang, 2015, ApJS, 218,3 Yu Lu, X. Li, 2015, MNRAS, 452(2): 1394
Dissolution of nonlinearity Dependeny of effectiveness on wavelength and frequency
Adaptive Basic Structure Elements and Spectral Feature Extraction Tan Yang, X. Li, 2015, MNRAS, 2015, 452, 158