160 likes | 282 Views
Decimating Samples for Mesh Simplification. Surface Reconstruction. A sample and PL approximation. Sample Decimation. Original 40K points. = 0.33 12K points. = 0.4 8K points. Local feature size and sampling. Medial axis Local feature size f(p). -sampling d(p)/f(p).
E N D
Surface Reconstruction • A sample and PL approximation
Sample Decimation Original 40K points • = 0.33 12K points • = 0.4 8K points
Local feature size and sampling • Medial axis • Local feature size f(p) • -sampling • d(p)/f(p)
Cocones Space spanned by vectors making angle /8 with horizontal • Compute cocones • Filter triangles whose duals intersect cocones • Extract manifold
Cocones, radius and height • cocones:C(p,,v) space by vectors making /2 - with a vector v. • radius r(p): radius of cocone • height h(p): min distance to the poles
Foot • 0.4 2046 points Original 20021 points • 0.33 2714 points
Foot • 0.4 2046 points • 0.33 2714 points • 0.25 4116 points
Bunny • 0.4 7K points • 0.33 11K points Original 35K points
Bunny • 0.4 7K points • 0.33 11K points Original 35K points
Conclusions • Introduced a measure radius/height ratio for skininess of Voronoi cells • We have used the radius/height ratio for sample decimation • Used it for boundary detection (SOCG01) • What about decimating supersize data (PVG01) • Can we use it to eliminate noise? • www.cis.ohio-state.edu/~tamaldey 543,652 points 143 -> 28 min 3.5 million points Unfin-> 198 min