590 likes | 611 Views
This proposal introduces Soft-Spectrum UWB transferring schemes with free-verse and geometric pulse waveform adaptation and shaping for co-existence, interference avoidance, regulatory compliance, and high data rates.
E N D
Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [CRL-UWB Consortium’s Soft-Spectrum UWB PHY proposal for IEEE 802.15.3a] Date Submitted: [9 May, 2003] Source: [Ryuji Kohno, Honggang Zhang, Hiroyo Ogawa] Company [(1) Yokohama National University, (2) Communications Research Laboratory, (3) Communications Research Laboratory ] Connector’s Address [3-4, Hikarino-oka, Yokosuka, 239-0847, Japan] Voice:[+81-468-47-5101], FAX: [+81-468-47-5431], E-Mail:[ kohno@crl.go.jp, honggang@crl.go.jp, hogawa@crl.go.jp] Re: [IEEE P802.15 Alternative PHY Call For Proposals, IEEE P802.15-02/327r7] Abstract: [Soft-Spectrum UWB transferring schemes with free-verse and geometric pulse waveform adaptation and shaping are proposed, which are suitable for co-existence, interference avoidance, matching with regulatory spectral mask, and high data rate. Our proposed Soft-Spectrum Adaptation (SSA) is able to be introduced in either single-band or mutiband implementations. Local sine template receiving scheme is also investigated for Soft-Spectrum UWB impulse radio.] Purpose: [For investigating the characteristics of High Rate Alternative PHY standard in 802.15TG3a, based on Soft-Spectrum adaptation, pulse waveform shaping and local sine template receiving] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15. R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
CRL-UWB Consortium’s Soft-Spectrum UWB PHY Proposal for IEEE 802.15.3a Ryuji KOHNO Honggang ZHANG , Hiroyo OGAWA Communications Research Laboratory (CRL) & CRL-UWB Consortium R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Members of CRL-UWB Consortium Takahiro YAMAGUCHI Advantest Corporation Tasuku TESHIROGI Anritsu Corporation Hideaki ISHIDA CASIO Computer Co., Ltd. Hiroyo OGAWA Communications Research Laboratory Tetsuya YASUI Communications Research Laboratory Toshiaki MATSUI Communications Research Laboratory Akifumi KASAMATSU Communications Research Laboratory Honggang ZHANG Communications Research Laboratory Tomohiro INAYAMA Fuji Electric Co., Ltd. Toshiaki SAKANE Fujitsu Limited Yoichi ISO Furukawa Electric Co., Ltd. Yoshinori OHKAWA Hitachi Cable, Ltd. Yoshinori ISHIKAWA Hitachi Communication Technologies, Ltd. Masatoshi TAKADA Hitachi Kokusai Electric Inc. Satoshi SUGINO Matsushita Electric Works, Ltd. Makoto SANYA Matsushita Electric IndustrialCo., Ltd. Tetsushi IKEGAMI Meiji University R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Members of CRL-UWB Consortium (cont.) Yoshiaki KURAISHI NEC Engineering, Ltd. Shigenobu SASAKI Niigata University Makoto YOSHIKAWA NTT Advanced Technology Corporation Yoshihito SHIMAZAKI Oki Electric Industry Co., Ltd. Masami HAGIOOki Network LSI Co., Ltd. Toru YOKOYAMAOMRON Corporation Shinsuke HARA Osaka University Hiroyuki NAGASAKA Samsung Yokohama Research Institute Sumio HANAFUSA SANYO Electric Co., Ltd. Makoto ITAMI Science University of Tokyo Hideyo IIDA Taiyo Yuden Co., Ltd. Eishin NAKAGAWA Telecom Engineering Center Takehiko KOBAYASHI Tokyo Denki University Kiyomichi ARAKI Tokyo Institute of Technology Jun-ichi TAKADATokyo Institute of Technology Ryuji KOHNO Yokohama National University R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Outline of Presentation Why Soft-Spectrum UWB for IEEE 802.15.3a WPANs What is Soft-Spectrum UWB 2.1 Soft-Spectrum UWB PHY system architecture 2.2 Soft-Spectrum UWB based on free-verse pulse shaping 2.3 Soft-Spectrum UWB based on geometrical pulse shaping Modulation, supported data rates and Link budget Performance analysis 4.1 Multiple access techniques and performance 4.2 Coexistence and narrowband interference mitigation 4.3 Multipath mitigation techniques and performance Implementation feasibility Summary R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
1. Why Soft-Spectrum UWB for IEEE 802.15.3a WPANs? • Philosophy of Soft-Spectrum Adaptation (SSA) with flexible pulse waveform and frequency band design free-verse pulse waveform shaping geometrical pulse waveform shaping • Interference avoidance and co-existence for harmonized, global implementation SSA can flexibly adjust UWB signal spectrum so as to match with spectral restriction in transmission power, i.e. spectrum masks in both cases of single and multiple bands. • Scalable, adaptive performance improvement • Smooth system version-up similar to Software Defined Radio R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Considering the whole frequency bands from DC to 15 GHz, in regard of the FCC Spectrum Mask • The maximum emission power is limited to –80dBm/MHz (whole bands) • Frequency efficiency is extremely worse What’s the solution? (I) Pulse domain (II) Spectrum domain What we want to do ? • Giving spectrum freedom Flexible spectrum design • Giving waveform freedom Flexible pulse waveform design • Giving system freedom Maintaining exchangeability with existing and coming UWB systems R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
What is Soft-Spectrum UWB ? • Basic Philosophy Soft-Spectrum Adaptation • Pulse design corresponding to required bandwidths • Flexible and adaptive spectrum , even if regional spectral mask is changed Soft-Spectrum Adaptation R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Basic Formulation Example of Pulse Generator B:bandwidth [f H ~f L] Feasible Solution: Pulse design satisfying Spectrum Mask • Divide (spread-and-shrink ) the whole bandwidth into several sub-bands Soft Spectrum (spectrum matching) • Pulse synthesis M-ary signaling N division R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Robustness to MAI Pulse width of 10 ns Frequency characteristics Pulse width Tread-off Pulse width of 3 ns R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
2.1 Soft-Spectrum UWB PHY System Architecture R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Soft-Spectrum Processing Bank UWB Antenna Data in Pulse Shaping Filter (BPF) Soft-Spectrum Pulse Waveform Generator (1) AWGN Channel (2) Multi-path Fading Channel Soft- Spectrum Modulator Power Amplifier Base-band Data Procession Unit Control/Timing in (1010110….) Example of Soft-Spectrum UWB Transmitter Block Diagram R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Soft-Spectrum Processing Bank Local Sine Soft-Spectrum Template Generator Soft-Spectrum Correlator Soft-Spectrum Pulse Multiplier Soft-Spectrum Pulse Integrator Soft-Spectrum Demodulator Base-band Data Processing Unit Information Data Out (1010110…) BPF LNA VGA UWB Antenna Acquisition + Channel Estimation Example of Soft-Spectrum UWB Receiver Block Diagram R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Various Pulse Waveforms Generated by Soft-Spectrum Processing Bank 2.2 Soft-Spectrum UWB Based on Free-Verse Pulse Shaping 2.3 Soft-Spectrum UWB Based on Geometrical Pulse Shaping R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
2.2 Soft-Spectrum UWB based on free-verse pulse shaping Freely design pulse waveforms using pulse overlapping and shifting K-2Free-verse Soft-Spectrum pulse (Dual-cycle) (Note: several band notches happen) K-1Free-verse Soft-Spectrum pulse R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
To Avoid Interference for WLAN in 2.4 & 5.2 GHz 2.4GHz 5.2GHz time frequency K-3 Free-verse Soft-Spectrum pulse (Note: band notches clearly happen at 2.4 and 5.2 GHz as well) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
To Match Spectrum with Mask K-4 Free-verse Soft-Spectrum pulse (Note: pulse waveform has more freedom) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
1 0.8 1 0.6 0.8 0.4 0.6 0.2 0.4 0 0.2 -0.2 0 -0.4 -0.2 -0.6 -0.4 -0.8 -0.6 1 0.8 0.6 Triangular-type envelope Exponential-type envelope 0.4 0.8 0.2 0.6 0 0.4 0.2 -0.2 0 -0.4 -0.2 -0.6 -0.4 -0.8 -0.6 Cosine-type envelope Gaussian-type envelope -0.8 2.3 Soft-Spectrum UWB based on geometrical pulse shaping Freely design pulse waveforms using various geometrical-type envelopes R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Frequency Soft-Spectrum UWB multi-band signals (Cosine-type envelope) 1.5 f4 1 f3 0.5 Amplitude f2 0 -0.5 f1 -1 Time -1.5 0 50 100 150 200 250 300 350 t1 t2 t3 t4 Time (samples) Soft-Spectrum UWB Multi-Band Time-Frequency Hopping Time-frequency-hopping for Soft-Spectrum multi-band UWB with geometrical-type envelopes R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
time Example of band allocation in Soft-Spectrum multi-band Approach Example of band allocation in Soft-Spectrum multi-band Approach 0 0 -2 -2 -4 -4 -6 -6 -8 Amplitude (dB) -8 -10 Amplitude (dB) -10 -12 -12 -14 -14 -16 -16 -18 -18 -20 3 3.5 4 4.5 5 5.5 6 Frequency(GHz) -20 3 3.5 4 4.5 5 5.5 6 Frequency(GHz) Adaptive, controllable spread-and-shrink of frequency bandwidths is feasible, according to the actual interference environment and the spectrum requirements Soft-Spectrum adaptation philosophy as mentioned before R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Spectrum overlapping and possible interference with WLAN (802.11a) Do not use overlapping frequency bandwidth causing possible interference Example of interference avoidance and co-existence using flexible geometric Soft-Spectrum pulse transmission R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
1 0.8 Exchangeable 0.6 0.4 Free-verse pulse Geometrical pulse 0.2 0 -0.2 5 GHz W-LAN -0.4 -0.6 Harmonized with each through Power Spectrum 1 4 5 6 8 9 10 11 2 3 7 F Dual- or three-band Multi-band Soft-Spectrum Adaptation R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
3. Modulation, Supported Data Rate and Link Budget Soft-Spectrum Pulse Shape Modulation (PSM) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Soft-Spectrum Pulse Shape Modulation (PSM) Modulation and Coding Scheme • Modulation schemes (Inner-keying) : QPSK and BPSK • Modulation schemes (Outer-keying) : M-ary Pulse Shape Modulation (PSM) • Coding Schemes: Viterbi K=7, Rate ½, ¾ • Pulse Guard-Intervals defined to allow • Improved multiple access • Improved ISI mitigation • Improved receiving energy capture R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
001 010 ••• 000 t 101 110 ••• 100 t Soft-Spectrum Pulse Shape Modulation (PSM) using orthogonal function Transmit 2 bits by using BPSK/QPSK modulation in each Soft-Spectrum pulse (Inner-keying) Transmit other more bits by defining different Soft-Spectrum pulse shapes and sequences (Outer-keying) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
f1 1~3 ns Guard Interval (adaptive) Pulse Time f2 t Soft-Spectrum Pulse Shape Modulation (PSM) scheme t f3 t Guard-Interval is used for mitigating multipath fading effects, improving multiple access performance, and inter symbol interference (ISI) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Supported data rate of Soft-Spectrum adaptation scheme (only Inner-keying, 5 modes) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Supported data rate of Soft-Spectrum adaptation scheme (Inner-keying and Outer-keying) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Hard-Spectrum Soft-Spectrum Duty Cycle (PRF) High Low Frequency Bands One Multiple sub-bands Processing Gain (per sub-band) Multiple pulses per bit One or more bits per pulse PRF (per sub-band) Raw bit rate*pulses per bit Raw bit rate/bits per pulse / No. of sub-bands Comparisons of Hard-Spectrum (Mono-Band) and Soft-Spectrum (Soft-Band) impulse radio transmissions R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Parameter Value Value Throughput (Rb) 110.5Mbps 224.3Mbps P T - 7.8dBm - 7.8dBm Average Tx power ( ) G T 0 dBi 0 dBi Tx antenna gain ( ) = ' f f f c min max 3.6GHz 3.6GHz • one of typical center frequencies of Soft-Spectrum lower sub-bands = p ' L 20 log ( 4 f / c ) 1 10 c 43.6dB 43.6dB Path loss at 1 meter ( ) = * 8 c 3 10 m/s = L 20 log ( d ) 2 10 20 dB at d =10 12 dB at d =4 Path loss at d m ( ) meters meters G R 0 dBi 0 dBi Rx antenna gain ( ) = + + - - P P G G L L R T T R 1 2 - 71.4dBm - 63.4dBm Rx power ( (dB)) Average noise power per bit - 93.6dBm - 90.5dBm = - + N 174 10 * log ( R ) 10 b ( ) Rx Noise Figure Referred to the Antenna 7.0dB 7.0dB N F Terminal ( ) = + P N N N F - 86.6dBm - 83.5dBm Average noise power per bit ( ) Minimum E /N ( S ) 6.5dB 7.2dB b 0 Implementation Loss (I) 3dB 3dB = - - - M P P S I R N 5.7dB 9.9dB Link Margin ( ) dBm dBm Proposed Min. Rx Sensitivity Level - 77.1 - 73.3 Link Budget of Soft-Spectrum Adaptation Scheme R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
4. Performance Analysis 4.1 Multiple Access Techniques and Performance 4.2 Coexistence and Narrowband Interference Mitigation R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Transmitted data 10000bits Frame/Slot 10ns/8 Users 5, 10 TH Sequence Gold Sequence Modulation PPM (Asyn.) 99% Bandwidth 6.75GHz Pulse width 3ns (A)/0.39ns(B) Channel AWGN Free-verse pulse (K-1) 4.1 Multiple Access Techniques and Performance Comparisons of Multiple Access Performance R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
(1) BER of Soft-Spectrum system while causing interference to other co-existing DS-SS system (2) BER of Soft-Spectrum system while receiving interference from other co-existing DS-SS system Data rate UWB:3.2Mbps SS:384kbps Bandwidth UWB:3.2GHz SS:3.4MHz DS-SS chip rate:3.84Mcps DS-SS carrier frequency ωc:2GHz UWB pulse time duration:0.7ns Number of pulses per symbol Ns:31 Pulse repetition time Tf:10ns DIR:-16.66dB 4.1 Multiple Access Techniques and Performance (Cont.) Multi-user performance comparisons of the DS-SS and Soft-Spectrum systems R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
(1) BER of DS-SS system while Dual-cycle UWB system co-exists (2) BER of Dual-cycle UWB system while DS-SS system co-exists 4.1 Multiple Access Techniques and Performance (Cont.) Multi-user performance comparisons of the coexistence of the DS-SS and Soft-Spectrum systems (K-2 free-verse pulse) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
(1) BER of DS-SS system while K-3Soft-Spectrum system causing interference (2) BER of K-3Soft-Spectrum system while DS-SS system causing interference 4.1 Multiple Access Techniques and Performance (Cont.) Multi-user performance comparisons of the coexistence of the DS-SS and Soft-Spectrum systems (K-3 free-verse pulse) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
(1) BER of DS-SS system while K-4Soft-Spectrum system causing interference (2) BER of K-4Soft-Spectrum system while DS-SS system causing interference 4.1 Multiple Access Techniques and Performance (Cont.) Multi-user performance comparisons of the coexistence of the DS-SS and Soft-Spectrum systems (K-4 free-verse pulse) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
4.2 Coexistence with Existing Narrowband System • IEEE 802.11a is the strongest narrowband interferer • Soft-Spectrum coexistence way • Do not use interfered bands for coexistence with IEEE 802.11a WLAN devices • Channel allocation can be freely, dynamically assigned depending on channel monitoring results and regional regulations R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Coexistence Strategies • Soft-Spectrum coexistence • Pre-configure device (through software control) not to use a particular band, based on various geographic region and device usage • Allow device to detect presence of NBI and avoid • Device interoperability functions could specify detection requirements to ensure adequate control • UWB power emitted into 802.11a bands and 4.9 GHz WLAN band in Japan • Avoiding 5.25 GHz (5.8 GHz) band for lower (upper) UNII band coexistence • Avoiding 4.7 GHz band (4.975 GHz using frequency offset channels) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
4.3Multipath Mitigation Techniques and Performance Soft-Spectrum Adaptation Scheme in AWGN and Multipath Fading Environment R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Soft-Spectrum Immunity in Multipath Fading Environment • Decrease inter-pulse interference (ISI) by employing adaptive Guard-Interval • Decrease multipath fading effects by choosing suitable Soft-Spectrum waveforms • Use baseband Pre- and Post-Rake receiver based on designing suitable intra-pulse waveform • Continuous channel measurements are good for changing multipath environment R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Impulse response realizations 0.6 0.4 TX 0.2 0 From transmitter -0.2 RX -0.4 -0.6 -0.8 0 50 100 150 250 200 Time (ns) Indoor multipath fading: Example of indoor UWB impulse radio signal propagation (IEEE 802.15SG3a S-V model: CM1, CM2, CM3, CM4) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Soft-Spectrum UWB transmitted signal (Gaussian-type envelope) 1 0.5 Amplitude 0 -0.5 -1 0 50 100 150 200 250 300 350 400 Time Soft-Spectrum UWB transmitted signal+AWGN (Gaussian-type envelope) 2 1.5 1 0.5 Amplitude 0 -0.5 -1 -1.5 -2 0 50 100 150 200 250 300 350 400 Time Soft-Spectrum UWB transmitted signal 1 0.5 Amplitude 0 -0.5 -1 0 50 100 150 200 250 300 350 400 Time Soft-Spectrum UWB transmitted signal+AWGN 2 1.5 1 0.5 Amplitude 0 -0.5 -1 -1.5 -2 0 50 100 150 200 250 300 350 400 Time Various geometrical Soft-Spectrum pulse sequences in AWGN channel R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
BER vs. Eb/No performance in the presence of AWGN (Receiver: 2 over-samples) BER vs. Eb/No performance in the presence of AWGN (Receiver: 4 over-samples) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
1 1 0.5 0.5 0 0 -0.5 -0.5 Group Delay 1 0.5 0 -0.5 Geometric Soft-Spectrum pulses Group Delay Geometric Soft-Spectrum inter-pulse interference caused by multipath fading R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 Inter-pulse interference effects of multipath fading on various geometric Soft-Spectrum pulse waveforms R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
UWB multipath fading signal UWB multipath fading signal 2 2 1.5 1.5 1 1 0.5 0.5 Amplitude Amplitude 0 0 -0.5 -0.5 -1 -1 -1.5 -1.5 -2 -2 0 50 100 150 200 250 300 350 400 0 100 200 300 400 500 600 700 800 900 1000 Time Time UWB multipath fading signal+AWGN UWB multipath channel impulse response 3 1.5 2 1 1 0.5 Amplitude Amplitude 0 0 -1 -0.5 -2 -3 -1 0 50 100 150 200 250 300 350 400 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Time Time Geometrical Soft-Spectrum pulse sequences in multipath fading channel (Cosine-type pulse waveform) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
Geometrical Soft-Spectrum receiving signal re-sampling (Cosine-type envelope) 1.5 Re-sampling 1 0.5 Amplitude 0 -0.5 -1 -1.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 Time 100 samples R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
1 0.5 1 0.5 0 Amplitude 0 Amplitude -0.5 -0.5 -1 -1 Timing off-set =0.25, 0.5, 1.0, 1.5 R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium
BER vs. Eb/No performance in the presence of receiver timing off-set (AWGN channel) BER vs. Eb/No performance in the presence of receiver timing off-set (multipath fading channel) R. Kohno, H. Zhang, H. Ogawa, CRL-UWB Consortium