400 likes | 534 Views
Open Source Analytics Visualization and Predictive Modeling of Big Data with R. Michael E. Driscoll, Ph.D. July 22, 2009 OSCON. “Hard-working Middle Class” Hypothesis. (from Jessica Hagy’s thisisindexed.com). Munge & Model OECD Data.
E N D
Open Source AnalyticsVisualization and Predictive Modeling of Big Data with R Michael E. Driscoll, Ph.D. July 22, 2009 OSCON
“Hard-working Middle Class” Hypothesis (from Jessica Hagy’s thisisindexed.com)
Munge & Model OECD Data gdp <- read.csv('gdp.csv')hours <- read.csv('hours.csv')gdp.hours <- merge(hours,gdp)gdp.hours$freetime <- 4380 - gdp.hours$hours attach(gdp.hours)plot(freetime ~ gdp)m <- lm(freetime ~ gdp,data=gdp.hours)abline(m,col=3,lw=2)pm <- loess(freetime ~ gdp)lines(spline(gdp,fitted(pm)))
modeling Big Data
100 thousand gene measures
1 million transactions during this presentation
1 billion clicks during this presentation
1 million pitches thrown since 2007
A Tale of Two Pitchers Hamels Webb
xyplot(x ~ y | type, data=pitch, fill.color = pitch$color, panel = function(x,y, fill.color, …, subscripts) { fill <- fill.color[subscripts] panel.xyplot(x,y, fill= fill, …) })
xyplot(x ~ y | type, data=pitch, fill.color = pitch$color, panel = function(x,y, fill.color, …, subscripts) { fill <- fill.color[subscripts] panel.xyplot(x, y, fill= fill, …) })
visualizing Big Data
qplot(log(carat), log(price), data = diamonds) qplot(carat, price, log=“xy”, data = diamonds) OR
qplot(log(carat), log(price), data = diamonds, alpha = I(1/20))
qplot(log(carat), log(price), data = diamonds, alpha=I(1/20)) + facet_grid(. ~ color)
Data Desktop
vs Coding Clicking
LinuxApacheMySQLR http://labs.dataspora.com/gameday