1 / 21

Conception d’un processeur DSP faible énergie en logique ternaire

Conception d’un processeur DSP faible énergie en logique ternaire. Université de Rennes - ENSSAT IRISA sentieys @enssat.fr. O. SENTIEYS, M. ALINE, E. KINVI-BOH. FTFC 2003, Paris, 14-16 Mai 2003. Outline. Motivations MVL implementation with SUS-LOC Principle of SUS-LOC structures

penney
Download Presentation

Conception d’un processeur DSP faible énergie en logique ternaire

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Conception d’un processeur DSP faible énergie en logique ternaire Université de Rennes - ENSSAT IRISA sentieys@enssat.fr O. SENTIEYS, M. ALINE, E. KINVI-BOH FTFC 2003, Paris, 14-16 Mai 2003

  2. Outline • Motivations • MVL implementation with SUS-LOC • Principle of SUS-LOC structures • Characterization at the transistor-level • Characterization at the gate-level • Design of a ternary DSP structure • Experimental results and comparisons • Conclusion and future works

  3. Multiple Valued Logic (MVL) • Currently, computers and other electronic devices run as 101101… binary logic with 2 logical states: 0, 1 • MVL can offer: • Many logical states: 0, 1, 2, 3, … • More complex functions • in less time, power and area than binary ? • MVL circuit structure ?

  4. MVL Circuits Structures • Current-Mode CMOS Logic (CMCL) [3] • Voltage-Mode nMOS technology [16] • QCD or CCD technology [1][2] • Supplementary Symmetrical Logic Circuit Structure (SUS-LOC) [8][11] • Voltage-Mode (i.e. CMOS) • Energy Efficient • A new promising structure

  5. A decrease of passive parasitic values A decrease in required power (dynamic and static) Ability to perform multiple logic functions in one operation e.g. (A+B) AND D Security, confidentiality An increase in data density Interconnections e.g. 40 bits become 25 terts1 (37.5% reduction), or 20 4L-digits More bandwidth with a reduced clock rate 16 bits f 10 terts 1 Mbit/s  750 ktert/s Reduced package size Technical advantages of SUS-LOC MVL circuits and devices 1 terts stands for ternary digits

  6. V0 V1 V2 Inputs Output N0 N1 N2 SUS-LOC principle SUS-LOC structures Transistor library Characterization Process • Principle • Ternary case: radix r = 3 • Logic states: {0,1,2} • r-1 different sources of power • e.g. {0V, 1.25V, 2.5V} • r-1 independent controllable paths VHDL Performance modeling

  7. X S 0 1 2 2 1 0 F 0 1 1 2 0 2 SUS-LOC principle SUS-LOC structures Transistor library Characterization Process • Example: ternary inverter • Truth Table • N(x) = <2 1 0> VHDL Performance modeling

  8. SUS-LOC principle Transistor Library Transistor library Characterization Process • Use of depleted and enhanced MOS transistors • SPICE models • 0.25m technolgy • 2m SOI technolgy (UCL) VHDL Performance modeling Id(Vgs) MbreakPD MbreakND MbreakP MbreakN MbreakP+ MbreakN+

  9. A S B CGAND3 SUS-LOC principle Logic Functions Transistor library Characterization Process • Ternary CGAND • Complementing Generalized AND • CGAND(X,Y) = N(MAX(x,y)) VHDL Performance modeling

  10. CGAND

  11. CGAND

  12. XCIRCUIT MVLStim Hierarchical netlist ELDO Report file MVLCara SUS-LOC principle Characterization Transistor library Characterization Process • Transistor-level Validation • Delay and Power Characterization VHDL Performance modeling

  13. SUS-LOC principle Characterization Transistor library Characterization Process • Transistor-level Validation • Delay and Power Characterization • e.g. Ternary vs Binary Inverter VHDL Performance modeling

  14. Design of a ternary standard cell library • CGAND, CGOR, Inverters, … • Mux, Tri-state • LATCH, D Flip-Flop • SRAM memory cell and sense amp. • Arithmetic components • HA, Pi, Gi, CLA, multiplier • 1T-Shifter

  15. SUS-LOC principle Gate-level Transistor library Characterization Process • VHDL package for simulation • STD_TERNARY_LOGIC • VHDL set of tools for architecture- and gate-level estimations • Power, Delay • Gate-level simulation VHDL Performance modeling ELDO simulation Report file VHDL Package Power consumption Delay VHDL Gate level simulation Description.vhd

  16. Outline • Motivations • MVL implementation with SUS-LOC • Design of a ternary DSP structure • Experimental results and comparisons • Conclusion and future works

  17. L EB L CB L DB H H T register A B C D S B A C D T T D A C D A A(H) B(H) MUX MUX MUX H MUX MUX 0 MUX Barrel shifter A B H Multiplier A U B S L M MUX N Legend : A Accumulator A B Accumulator B C CB data bus D DB data bus E EB data bus M MAC unit S Barrel shifter T T register U ALU E H ALU Adder Bus width : L : 16 bits, 10 terts N : 32 bits, 20 terts H : 40 bits, 25 terts H A ternary vs. binary DSP

  18. Interconnections • Bus structure • 16 bits become 10 terts • 40 bits become 25 terts • Activity of wires • Binary: • Ternary:

  19. SRAM Memory • Transistor equivalent, faster access time • Up to 50% in energy reduction

  20. Arithmetic structures • e.g. 40-bit vs. 25-tert Sklansky Adder • 100 vs. 54 Brent and Kung cells

  21. Conclusion and future works • SUS-LOC concepts for a ternary DSP • Experiments on representative modules • Comparison: SUS-LOC vs. CMOS circuits • High energy efficiency • Future works • Prototype chip with an SOI technology • 3L and 4L SRAM and Flash memories • Optimization of arithmetic structures • …

More Related