1 / 13

(X + Y) 2 = X 2 + 2XY + Y 2 dk T;kferh; fu:i.k

(X + Y) 2 = X 2 + 2XY + Y 2 dk T;kferh; fu:i.k. X+Y. jes”k cMksuh. X+Y. mn~ns';. bl l= ds vUr esa Nk = (X + Y) 2 dk foLrkj tku ldsaxsA loZlfedk (X + Y) 2 = X 2 + 2XY + Y 2 dk T;kferh ; :i ls le> ldsaxsA. iwoZKku. Nk = pj jkf”k;ksa ds ; ksx o xq.kk ls ifjfpr gSaA

penney
Download Presentation

(X + Y) 2 = X 2 + 2XY + Y 2 dk T;kferh; fu:i.k

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. (X + Y)2 = X2 + 2XY + Y2dk T;kferh; fu:i.k X+Y jes”kcMksuh X+Y

  2. mn~ns'; bl l= dsvUresaNk= • (X + Y)2dkfoLrkjtkuldsaxsA • loZlfedk(X + Y)2 = X2 + 2XY + Y2dkT;kferh; :i ls le> ldsaxsA

  3. iwoZKku • Nk= pjjkf”k;ksads ;ksx o xq.kklsifjfprgSaA • Nk= oxZ o vk;rdsxq.k/keksaZlsifjfprgSaA • Nk= oxZ o vk;rds {ks=Qydslw= lsifjfprgSaA b vk;r a oxZ a {ks=Qy = yEckbZ x pkSM+kbZ = a x b = ab a {ks=Qy = ¼Hkqtk½2= a x a = a2

  4. ekuk ,d oxZ gS]ftldh izR;sd Hkqtk X + Y bdkbZ gSA X+Y Hkqtk Hkqtk X+Y bl oxZ dk {ks=Qy = ¼Hkqtk½2 gksxkA vr% {ks=Qy = (X + Y)2

  5. X bdkbZ Hkqtk ds oxZ dk {ks=Qy ¼Hkqtk½2 {ks=Qy= X Hkqtk Hkqtk X {ks=Qy = X x X = X2

  6. X yEckbZ rFkk Y pkSM+kbZ ds vk;r dk {ks=Qy {ks=Qy = yEckbZ x pkSM+kbZ yEckbZ X pkSM+kbZ Y {ks=Qy= XxY = XY

  7. X yEckbZ rFkk Y pkSM+kbZ ds vk;r dk {ks=Qy {ks=Qy = yEckbZ x pkSM+kbZ pkSM+kbZ Y X yEckbZ {ks=Qy=Y x X = XY

  8. Y bdkbZ Hkqtk ds oxZ dk {ks=Qy {ks=Qy = ¼Hkqtk½2 Y Hkqtk Hkqtk Y {ks=Qy=Y x Y = Y2

  9. ;fn XbdkbZHkqtkds ,d oxZ] XyEckbZrFkkYpkSM+kbZdsnksvk;r] rFkkYbdkbZHkqtkds ,d oxZdksla;ksftrdjsa& X X+Y Y Y X X+Y pkjksavkd`fr;ksadksfeykusijX + YHkqtkdk ,d oxZcurkgSA

  10. Hkqtk X X yEckbZ X+Y Hkqtk Y Hkqtk pkSM+kbZ Hkqtk Y X Hkqtk yEckbZ pkSM+kbZ X+Y Hkqtk {ks=Qy= +Y2 X2 + XY + XY = X2 + 2XY +Y2 = (X + Y)2 (X + Y)2 = X2 + 2XY + Y2

  11. blh izdkj (2X + Y)2dk foLrkj gksxk % Hkqtk 2X 2X yEckbZ 2X+Y Hkqtk Y Hkqtk pkSM+kbZ Hkqtk 2X Y Hkqtk yEckbZ pkSM+kbZ 2X+Y Hkqtk {ks=Qy= 4X2 + 2XY + 2XY +Y2 = 4X2 + 4XY +Y2 = (2X + Y)2 (2X + Y)2 = 4X2 + 4XY + Y2

  12. vkdyu • (X + 2Y)2dkT;kfefr dh lgk;rklsfoLrkjdhft,A • (3P + 4R)2dkT;kfefr dh lgk;rklsfoLrkjdhft,A

  13. fu"d’kZ • bl l= dsvUresaNk=ksa us • (X + Y)2dsfoLrkjdkstkukA • loZlfedk(X + Y)2 = X2 + 2XY + Y2dksT;kferh; :i ls le>kA

More Related