380 likes | 388 Views
Learn about the generalised row echelon form, augmented matrix notation, and how to perform row operations in order to create zeros and solve matrix-vector systems. Understand the impact of row operations on determinants.
E N D
4.4.1 Generalised Row Echelon Form Any all-zero rows are at the bottom. Correct ‘step pattern’ of first non-zero row entries.
4.4.1 Generalised Row Echelon Form • Any all-zero row at the bottom • Correct ‘step pattern’ of first non-zero row entries ROW 1 ROW 2 1 3 2 0 0 1 0 0 0
4.4.1 Generalised Row Echelon Form • Any all-zero row at the bottom • Correct ‘step pattern’ of first non-zero row entries ROW 1 ROW 2 ROW 3 1 3 2 0 1 1 0 2 0
4.4.1 Generalised Row Echelon Form • Any all-zero row at the bottom • Correct ‘step pattern’ of first non-zero row entries ROW 1 ROW 2 ROW 3 1 3 2 0 1 1 0 2 2
4.4.1 Generalised Row Echelon Form • Any all-zero row at the bottom • Correct ‘step pattern’ of first non-zero row entries 0 0 0 1 ROW 3 ROW 1 ROW 2 ROW 4 1 3 2 2 0 0 0 0 0 0 0 1
4.4.1 Formal process (Handout 3) a12 a13 a1n a11 a21 a23 a2n a22 a31 a32 a33 Create zeros an1 an2 ann
4.4.1 Formal process (Handout 3) a12 a13 a1n a11 a'23 0 a'2n a'22 a31 a32 a33 Create zeros an1 an2 ann
4.4.1 Formal process (Handout 3) a12 a13 a1n a11 a'23 0 a'2n a'22 a'32 0 a'33 Create zeros an1 an2 ann
4.4.1 Formal process a12 a13 a1n a11 a'23 0 a'2n a'22 a'32 0 a'33 Create zeros 0 a'n2 a'nn
4.4.1 Formal process (Handout 3) a12 a13 a1n a11 a'23 0 a'2n a'22 a'32 0 a'33 Create zeros 0 a'n2 a'nn
4.4.1 Formal process (Handout 3) a12 a13 a1n a11 a'23 0 a'2n a'22 0 0 a''33 Create zeros 0 a'n2 a'nn
4.4.1 Formal process (Handout 3) a12 a13 a1n a11 a'23 0 a'2n a'22 0 0 a''33 Create zeros 0 0 a''nn
4.4.1 Formal process (Handout 3) a12 a13 a1n a11 a'23 0 a'2n a'22 0 0 a''33 Create zeros 0 0 a''nn
4.4.2 Augmented Matrix notation • We perform row operations on the matrix and the opposite row: • Combine both of these into one matrix called the augmented matrix: 1 1 1 1 6 x 6 1 1 2 2 1 1 -1 -1 1 y = 1 1 1 -1 -1 2 2 z 5 5
4.4.3 Row sums • A way to check calculations: ROW SUMS Add up rows 2. Write totals on right 9 3 7 • Do a row operation: e.g. 9 3-2x9 1 1 1 1 6 6 1 1 7 2 1 -1 1 r2 r2 - 2r1 1 1 -1 -1 2 2 5 5
4.4.3 Row sums • A way to check calculations: ROW SUMS Add up rows 2. Write totals on right 9 3 7 • Do a row operation: e.g. 9 -15 0 -1 -3 -11 1 1 1 1 6 6 1 1 7 2 1 -1 1 r2 r2 - 2r1 1 1 -1 -1 2 2 5 5 • Check row sums: e.g. 0 + (-1) – 3 – 11 = -15
4.5 Examples Matrix-vector system Write in augmented form 2 3 x 9 1 4 8 6 y = 18 z 3 1 -2 4
4.5 Examples – EXAMPLE 1 Matrix-vector system Write in augmented form Write on row sums 15 36 6 • Use the top left entry to create zeros below it • First get a zero in the second row: 2 2 3 3 9 9 1 1 r2 r2 - 4r1 15 4 8 6 18 36 – 4x15 3 3 1 1 -2 -2 4 4 6
4.5 Examples – EXAMPLE 1 Matrix-vector system Write in augmented form Write on row sums 15 15 -24 36 6 6 • Use the top left entry to create zeros below it • First get a zero in the second row: 2 2 3 3 9 9 1 1 r2 r2 - 4r1 4 8 6 18 3 3 1 1 -2 -2 4 4
4.5 Examples – EXAMPLE 1 Matrix-vector system Write in augmented form Write on row sums 15 15 -24 36 6 6 • Use the top left entry to create zeros below it • First get a zero in the second row: 2 2 3 3 9 9 1 1 r2 r2 - 4r1 4 8 6 18 0 0 -6 -18 3 3 1 1 -2 -2 4 4
4.5 Examples – EXAMPLE 1 15 15 36 -24 6 6 • Check row sums before continuing... 1 + 2 + 3 + 9 = 15 ... OK! 0 + 0 - 6 – 18 = -24 ... OK! 3 + 1 - 2 + 4 = 6 ... OK! 2 2 3 3 9 9 1 1 r2 r2 - 4r1 0 4 0 8 6 -6 18 -18 3 3 1 1 -2 -2 4 4
4.5 Examples – EXAMPLE 1 15 15 15 15 36 -24 -24 -24 -39 6 6 • Now get a zero in the third row: • Want upper triangular form so swap rows 2 and 3 2 2 2 2 3 3 3 3 9 9 9 9 1 1 1 1 r3 r3 - 3r1 r2 r2 - 4r1 r2 r3 4 0 0 8 0 0 6 -6 -6 18 -18 -18 0 0 -6 -18 -39 0 -5 -11 -23 3 0 3 -5 1 1 -11 -2 -2 4 -23 4
4.5 Examples – EXAMPLE 1 15 -39 0 -5 -11 -23 -24 • Now solve by backwards substitution: r3 : -6z = -18 z = 3 r2 : -5y – 11z = -23 -5y -33 =-23 y = -2 2 3 9 1 r1 : x + 2y +3z = 9 x - 4 + 9 = 9 x = 4 • Hence: x = 4, y = -2, z = 3 is the unique solution. 0 0 -6 -18
4.5 Examples Matrix-vector system Write in augmented form -1 0 x 1 1 0 1 -1 y = 6 z 1 0 1 -1
4.5 Examples – EXAMPLE 2 Matrix-vector system Write in augmented form Write on row sums 1 1 6 6 0 1 • Use the top left entry to create zeros below it • First get a zero in the third row: -1 -1 0 0 1 1 1 1 r3 r3 - r1 0 0 1 1 -1 -1 6 6 0 1 1 1 1 -2 -1 0
4.5 Examples – EXAMPLE 2 1 1 1 6 6 6 0 -6 1 • Use second row to get a zero in the third row: -1 -1 -1 0 0 0 1 1 1 1 1 1 r3 r3 - r1 r3 r3 – r2 0 0 0 1 1 1 -1 -1 -1 6 6 6 2 0 0 1 0 1 1 1 -2 -1 0 -8
4.5 Examples – EXAMPLE 2 1 6 -6 • Solve by backwards substitution: r3 : 2z = -8 z = -4 -1 0 1 1 UNIQUE SOLUTION y + 4 = 6 y = 2 r2 : y - z = 6 0 1 -1 6 2 0 0 -8 r1 : x - y = 1 x - 2 = 1 x = 3
4.6 Determinants Question: During the elimination process, what has changed about the determinant of the matrix? • Swapping rows multiplies the determinant by (-1) • Adding or subtracting multiples of rows does not change the determinant
4.6 Determinants • In EXAMPLE 1 we used one swap operation to get from 0 -5 -11 = B A = • Calculating the determinant: |A|= (-1) |B| = (-1)x(1)(-5)(-6) = -30 2 2 3 3 1 1 4 8 6 0 0 -6 3 1 -2 • Non-zero, so we got a unique solution
4.6 Determinants • In EXAMPLE 2 we used no swaps to get from 0 1 -1 = B A = • Calculating the determinant: |A|= |B| = (1)(1)(2) = 2 -1 -1 0 0 1 1 0 1 -1 2 0 0 1 0 1 • Non-zero, so got a unique solution
4.6 Non-Standard Gaussian Elimination • In standard Gaussian Elimination the following operation were allowed: • Swap two rows; • Add or Subtract a multiple of a row from another row. • In Non-Standard Gaussian Elimination we are also allowed to do the following: • Multiply a row by a constant. E.g. r3 2r3
4.6 Non-Standard Gaussian Elimination • Quick Example: In Standard G.E. 1 4 8 1 4 8 3 3 -8/3 -16/3 5 -1 4 8 0 -8/3 • This is a bit messy with the fractions. However, in Non-Standard G.E. 1 4 8 1 4 8 3 3 -8 -16 5 -1 4 8 0 -8 • However, in doing this we have multiplied the determinant by 3. r2 3r2 - 5r1 r2 r2 - 5r1/3
4.7 Backwards substitution: more general case • Two cases after elimination process: All diagonal entries non-zero, then determinant is non-zero. Hence, get answer by backwards substitution. Is a zero on the diagonal, then determinant is zero. Either get infinite solutions or no solutions.
4.7.1 Case of No Solutions • Suppose we followed the elimination process and got to: 11 -3 9 1 2 3 • Zeros on the diagonal, so determinant is zero. 0 0 -1 0 0 0 • ROW 3 gives the equation 1 x 2 11 3 0 0 -1 y = -3 0x + 0y + 0z = 9 0 z 0 0 9 • This is impossible. Hence there are no solutions.
4.7.1 Case of Infinite solutions • Suppose instead that 11 -3 0 • ROW 3 now OK: 0x + 0y + 0z = 0 1 2 3 0 0 -1 0 0 0 • Have two equations in three unknowns 1 x 2 11 3 0 0 -1 y = -3 • Get infinitely many solutions 0 z 0 0 0
4.7.1 Case of Infinite solutions • Three steps: In the final (echelon-form) of the matrix, circle the first non-zero entry in each row Find the columns that have no circles in. Each column corresponds to a variable. Assign a new name to each of the chosen variables, then use back substitution on the non-zero rows.
4.7.1 Case of Infinite solutions 11 -3 0 Circle first non-zero row entries Find column with no circles in 1 2 3 0 0 -1 0 0 0 Column 2 corresponds to the y variable 1 x 2 11 3 0 0 -1 y = -3 3. Assign a name to y: let y = α 0 z 0 0 0
4.7.1 Case of Infinite solutions 11 -3 0 • Solve by back substitution: 1 2 3 r3 : Tells us nothing 0 0 -1 r2 : -z = -3 z = 3 0 0 0 r1 : 3x + y + 2z = 11 3x + α + 6 = 11 1 x 2 11 3 x = (5 – α)/3 0 0 -1 y = -3 0 z 0 0 0 • So, solution is x = (5 – α)/3, y = α, z = 3 for any α