750 likes | 1.05k Views
Binocular Stereo #1. Topics. 1. Principle 2. binocular stereo basic equation 3. epipolar line 4. features and strategies for matching. single image is ambiguous. A. a”. a’. another image taken from a different direction gives the unique 3D point. Binocular stereo. Base line.
E N D
Topics 1. Principle 2. binocular stereo basic equation 3. epipolar line 4. features and strategies for matching
single image is ambiguous A a” a’ another image taken from a different direction gives the unique 3D point Binocular stereo
Base line Epipolar line One image point Possible line of sight Epipolar plane Epipolar line constraints Corresponding points lie on the Epipolar lines Epipolar line constratints
C2 C1 Epipolar geometry (multiple points) e2 e1 • Epipoles: • intersections of baseline with image planes • projection of the optical center in another image • the vanishing points of camera motion direction
rectification Characteristics of epipolar line
Basic binocular stereo equation A physical point left image point right image point right image plane left image plane focal length right image center z left image center World coordinate system base line length
Camera Model Pinhole camera
y x (X, Y, Z) (x, y) (sX, sY, sZ) Image plane Y X -Z Camera Model geometry Perspective projection View point (Optical center) f : focal length
d + x d - x Basic binocular stereo equation z=-2df/(x”-x’) x”-x’: disparity 2d : base line length -z x’ x” f d d z
Classic algorithms for binocular Stereo MIT group Marr-Poggio Marr-Poggio-Grimson Nishihara-Poggio Lucas-Kanade Ohta-Kanade Matthie-Kanade Okutomi-Kanade Baker Hannah Moravec Barnard-Thompson CMU group Stanford group
Features for matching 10 11 12 10 11 12 10 11 12 10 11 12 11 15 16 a. brightness b. edges c. edge intervals d. interest points
Strategies for matching 10 10 10 10 5 10 10 10 10 10 10 10 10 5 10 10 10 10 10 10 10 10 10 10 10 10 10 a. relaxation b. coarse to fine c. dynamic programming global optimam local optimam local optimam
Main purpose of development Marr-Poggio Marr-Poggio-Grimson Nishihara-Poggio Lucas-Kanade Ohta-Kanade Matthie-Kanade Okutomi-Kanade Baker Hannah Moravec Barnard-Thompson simulate human stereo simulate human stereo map making map making map making map making map making navigation navigation navigation
Features for matching Marr-Poggio Marr-Poggio-Grimson Nishihara-Poggio Lucas-Kanade Ohta-Kanade Matthie-Kanade Okutomi-Kanade Baker Hannah Moravec Barnard-Thompson points(random dots) edges intervals brightness(gradient) intervals brightness brightness edges interest points interest points interest points
Strategies for matching Marr-Poggio Marr-Poggio-Grimson Nishihara-Poggio Lucas-Kanade Ohta-Kanade Matthie-Kanade Okutomi-Kanade Baker Hannah Moravec Barnard-Thompson relaxation coarse to fine coarse to fine relaxation dynamic programming Relaxation(Kalman filter) relaxation dynamic programming coarse to fine coarse to fine relaxation
Summary • 1.binocular stereo takes two images of 3D point from two different positions and determines its 3D coordinate system. • 2. Epipolar line • 2D matching • ↓ • 1D matching • 3. Features for matching • ---brightness,edges,edge interval,interest point • 4. Strategies for matching • ---relaxation,coarse to fine,dynamic programming • 5. Read • B&B pp.88-93 • Horn pp.299-303
Topics case study area-based stereo Marr-poggio stereo simulate human visual system Ohta-Kanade stereo aerial image analysis Moravec stereo navigation
Classification of stereo method 1. Features for matching a. brightness value b. point c. edge d. region 2. Strategies for matching a. brute-force (not a strategy ???) b. coarse-to-fine c. relaxation d. dynamic programming 3. Constraints for matching a. epipolar lines b. disparity limit c. continuity d. uniqueness
Area-based stereo 1. method b c • 2. problem • a. trade-off of window size and resolution • b. dull peak b c b c
Area-based stereo 1. Features for matching a. brightness value b. point c. edge d. region 2. Strategies for matching a. brute-force (not a strategy ???) b. coarse-to-fine c. relaxation d. dynamic programming 3. Constraints for matching a. epipolar lines b. disparity limit c. continuity d. uniqueness
Marr-Poggio Stereo(`76) Simulating human visual system (random dot stereo gram) Marr,Poggio “Coopertive computation of stereo disparity” Science 194,283-287
Input : random dot stereo left image random dot shift the catch pat right image we can see the height different between the central and peripheral area
Constraints • Epipolar line constraint • Uniqueness constraint • each point in a image has only one depth value O.K.No. • Continuity constraint • each point is almost sure to have a depth value near the values of neighbors O.K. No.
D E F A B C A B D E F C Uniqueness constraint prohibits two or more matching points on one horizontal or vertical lines continuity constraint attracts more matching on a diagonal line (E-A) A B C (E-B) prohibit (E-C) (D-A) attract (E-B) Same depth (F-C) attract
relaxation 10 10 10 10 5 10 10 10 10 10 10 10 10 5 10 10 10 10 10 10 10 10 10 10 10 10 10 n n+1
Marr-Poggio Stereo(`76) 1. Features for matching a. brightness value b. point c. edge d. region 2. Strategies for matching a. brute-force (not a strategy ???) b. coarse-to-fine c. relaxation d. dynamic programming 3. Constraints for matching a. epipolar lines b. disparity limit c. continuity d. uniqueness simulate the human visual system (MIT)
Ohta-Kanade Stereo(`85) Map making Ohta,Kanade “Stereo by intra- and inter-scanline search using dynamic programming” ,IEEE Trans.,Vol. PAMI-7,No.2,pp.139-14
now matching become 1D to 1D L1 L2 L3 L4 L5 L6 R1 R2 R3 R4 R5 R6 L disparity R yet, N line * ML * MR (512 * 100 * 100 * 10 m sec = 15 hours)
Path Search • Matching problem can be considered as a path search problem • define a cost at each candidate of path segment based some ad-hoc function 10 100 100
Dynamic programming We can formalize the path finding problem as the following iterative formula optimum cost to K cost between M and K 3 0 2 1 Optimum costs are known
stereo pair edges
path disparity depth
stereo pair edges depth
Ohta-Kanade Stereo(`85) 1. Features for matching a. brightness value b. point c. edge d. region 2. Strategies for matching a. brute-force (not a strategy ???) b. coarse-to-fine c. relaxation d. dynamic programming 3. Constraints for matching a. epipolar lines b. disparity limit c. continuity d. uniqueness aerial image analysis (CMU) Brightness of interval
Moravec Stereo(`79) navigation Moravec “Visual mapping by a robot rover” Proc 6th IJCAI,pp.598-600 (1979)
Moravec’s cart Slide stereo Motion stereo
Slider stereo (9 eyes stereo) • 9C2 = 36 stereo pairs!!! • each stereo has an uncertainty measure • uncertainty = 1 / base-line • each stereo has a confidence measure long base line large uncertainty
matching expand matching expand matching Coarse to fine
area:confidence measure σ estimated distance σ:uncertainty measure Interest point 9C2 = 36 curves
Moravec Stereo(`81) 1. Features for matching a. brightness value b. point c. edge d. region 2. Strategies for matching a. brute-force (not a strategy ???) b. coarse-to-fine c. relaxation d. dynamic programming 3. Constraints for matching a. epipolar lines b. disparity limit c. continuity d. uniqueness navigation (Stanford) interest point
Summary 1. Two images from two different positions give depth information 2. Epipolar line and plane 3. Basic equation Z=-2df/(x”-x’) x”-x’: disparity 2d : base line length 4. case study area-based stereo Marr-poggio stereo simulate human visual system Ohta-Kanade stereo aerial image analysis Moravec stereo navigation 5. Read Horn pp.299-303
Camera Model Pinhole camera