230 likes | 380 Views
Thesaurus Design (from analised corpora). Pablo Gamallo, Alexandre Agustini, G.P. Lopes {gamallo,aagustini}@di.fct.unl.pt GLINt (Gupo de Lingua Natural) FCT, Universidade Nova de Lisboa. Thesaurus design Linguistic goals. fine sanction president secretary small big
E N D
Thesaurus Design (from analised corpora) Pablo Gamallo, Alexandre Agustini, G.P. Lopes {gamallo,aagustini}@di.fct.unl.pt GLINt (Gupo de Lingua Natural) FCT, Universidade Nova de Lisboa
Thesaurus design Linguistic goals fine sanction president secretary small big ministery minister banc organisation
Thesaurus designProprieties • Distribucional Hypothesis:Words sharing similar contexts are semantically related • Types of context: simple co-occurrence (bigrams) co-occurrence within a window (n-grams) syntactic structures • Domain specific corpus
Thesaurus designSteps • Extraction of syntactic contexts from the corpus • Similarity measure between words (based on their syntactic contexts) • For each word, identify its most similar words
Extraction of syntactic contexts • Tagging (PoS tags) • Chunking (parsing in basic chunks) • Attachment heuristics • Identification of binary dependencies • Extraction of syntactic contexts
Tagging and chunking Clinton sent a clear message to the president of Portugal Tagger: Clinton_N sent_V a_ART clear_ADJ message_N to_PREP the_ART authorities_N of_PREP Portugal_N Chunking: NP (Clinton) VP (send) NP (message, clear) PP(to, NP(authority)) PP(of, NP(portugal))
Attachment Heuristics and Syntactic Dependencies • Attachment of Basic Chunks: • <NP(Clinton) , VP( sent)> • <VP( sent), NP(message, clear)> • <NP(message, clear), PP(to, NP(authority))> • <NP(president), PP(of, NP(portugal))> • Binary Dependencies: • <SUBJ, send , Clinton> • <DOBJ, send, message> • <TO, message, authority> • <OF, authority, portugal>
Syntactic Contexts <DOBJ, send , message> : <DOBJ, send, (*)> <DOBJ, (*), message> <TO, message, authority> : <TO, message, (*)> <TO, (*), authority> <OF, authority, portugal > : <OF, authority, (*)> <OF, (*), portugal>
Similarity MeasureBinary Jaccard coefficient The similarity between two words relies on: The ratio between the number of contexts that are common to both words and the total number of their contexts.
MicroCorpus Pedro is reading a book and Maria is reading a book, Pedro is reading a novel and Maria read a novel yesterday, Pedro is reading a lot of things, but Pedro loves Maria, Maria loves books, in fact Maria loves a lot of things. Maria is eating an apple and Pedro is eating an apple too, Pedro eated eggs yesterday, Pedro eats a lot of things, Maria is eating eggs, Maria loves eggs a lot.
Thesaurical relations between names Pedro Maria book novel apple egg thing book, egg, apple, novel (book egg)? (Maria thing)?? (Pedro egg)???
Extracting syntactic contexts of names • Pedro: (<SUBJ, read , (*)>, 3) (<SUBJ, love , (*)>, 1) ( <SUBJ, eat, (*)>, 3) • Maria: (<SUBJ, read , (*)>,2) (<SUBJ, love, (*)>, 3) (<SUBJ, eat, (*)>,2) (<IOBJ-DE, love, (*)>,1) • novel: (<DOBJ, read , (*)>,2) • book: (<DOBJ, read , (*)>,3) (<IOBJ-DE, love , (*)>,1) • thing: (<DOBJ, read , (*)>,1) (<DOBJ, eat, (*)>,1) (<IOBJ-DE, love, (*)>,1) • apple: (<DOBJ, eat, (*)>,2). • egg: (<DOBJ, eat , (*)>,2) (<IOBJ-DE, love, (*)>,1)
Computing the weigth of a context for each word (1): Pedro: (<SUBJ, read , (*)>, 3)GW(<SUBJ, read , (*)>) = log (3/3 + 2/4) / log(2) = 0.17 / 0.3 = 0.56LW(Pedro, <SUBJ, read , (*)>) = log(3) = 0.47W(Pedro, <SUBJ, read , (*)>) = 1.03 Pedro: (<SUBJ, love , (*)>, 1)GW(<SUBJ, love , (*)>) = log (1/3 + 3/4) / log(2) = 0.034 / 0.3 = 0.11LW(Pedro, <SUBJ, love , (*)>) = log(1) = 0W(Pedro, <SUBJ, read , (*)>) = 0.11 Pedro: (<SUBJ, eat , (*)>, 3) GW(<SUBJ, eat , (*)>) = log (3/3 + 2/4) / log(2) = 0.17 / 0.3 = 0.56LW(Pedro, <SUBJ, eat , (*)>) = log(3) = 0.47W(Pedro, <SUBJ, eat, (*)>) = 1.03
Computing the weigth of a context for each word (2): Maria: (<SUBJ, read , (*)>, 2) GW(<SUBJ, read , (*)>) = log (3/3 + 2/4) / log(2) = 0.17 / 0.3 = 0.56LW(Maria, <SUBJ, read , (*)>) = log(2) = 0.3W(Maria,, <SUBJ, read , (*)>) = 0.86 Maria: (<SUBJ, love , (*)>, 3) GW(<SUBJ, love , (*)>) = log (1/3 + 3/4) / log(2) = 0.034 / 0.3 = 0.11LW(Maria, <SUBJ, love , (*)>) = log(3) = 0.47W(Maria, <SUBJ, read , (*)>) = 0.58 Maria: (<SUBJ, eat , (*)>, 2) GW(<SUBJ, eat , (*)>) = log (3/3 + 2/4) / log(2) = 0.17 / 0.3 = 0.56LW(Maria, <SUBJ, eat , (*)>) = log(3) = 0.3W(Maria, <SUBJ, eat, (*)>) = 0.86 Maria: (<IOBJ-DE, love , (*)>, 1) GW(< IOBJ-DE, love , (*)>) = log (1/2+ 1/4+1/3 + 1/2) / log(4) = 0.19 / 0.6 = 0.31LW(Maria, < IOBJ-DE, love , (*)>) = log(1) = 0.W(Maria, < IOBJ-DE, love , (*)>) = 0.31
Computing the weigth of a context for each word (3): novel: (<DOBJ, read , (*)>, 2)GW(<DOBJ, read , (*)>) = log (2/1 + 3/2 + 1/3) / log(3) = 0.54 / 0.47 = 1.15LW(novel, <DOBJ, read , (*)>) = log(2) = 0.3W(novel, <DOBJ, read , (*)>) = 1.45 book: (<DOBJ, read , (*)>, 3)GW(<DOBJ, read , (*)>) = log (2/1 + 3/2 + 1/3) / log(3) = 0.54 / 0.47 = 1.15LW(book, <DOBJ, read , (*)>) = log(3) = 0.47W(book, <DOBJ, read , (*)>) = 1.62 book: (<IOBJ-DE, love , (*)>, 1)GW(< IOBJ-DE, love , (*)>) = log (1/2+ 1/4+1/3 + 1/2) / log(4) = 0.19 / 0.6 = 0.31LW(book, < IOBJ-DE, love , (*)>) = log(1) = 0.W(book, < IOBJ-DE, love , (*)>) = 0.31
Computing the weigth of a context for each word (4): thing: (<DOBJ, read , (*)>, 1)GW(<DOBJ, read , (*)>) = log (2/1 + 3/2 + 1/3) / log(3) = 0.54 / 0.47 = 1.15LW(thing, <DOBJ, read , (*)>) = log(1) = 0W(thing, <DOBJ, read , (*)>) = 1.15 thing: (<DOBJ, eat , (*)>, 1)GW(<DOBJ, eat , (*)>) = log (1/3 + 2/1 + 2/2) / log(3) = 0.52 / 0.47 = 1.1LW(eat, <DOBJ, eat , (*)>) = log(1) = 0W(book, <DOBJ, eat , (*)>) = 1.1 thing: (<IOBJ-DE, love , (*)>, 1) GW(< IOBJ-DE, love , (*)>) = log (1/2+ 1/4+1/3 + 1/2) / log(4) = 0.19 / 0.6 = 0.31LW(thing, < IOBJ-DE, love , (*)>) = log(1) = 0.W(thing, < IOBJ-DE, love , (*)>) = 0.31
Computing the weigth of a context for each word (5): apple: (<DOBJ, eat, (*)>, 2)GW(<DOBJ, eat , (*)>) = log (1/3 + 2/1 + 2/2) / log(3) = 0.52 / 0.47 = 1.1LW(apple, <DOBJ, eat , (*)>) = log(2) = 0.3W(apple, <DOBJ, eat, (*)>) = 1.4 egg: (<DOBJ, eat , (*)>, 2)GW(<DOBJ, eat , (*)>) = log (1/3 + 2/1 + 2/2) / log(3) = 0.52 / 0.47 = 1.1LW(egg, <DOBJ, eat , (*)>) = log(2) = 0.3W(book, <DOBJ, eat, (*)>) = 1.4 egg: (<IOBJ-DE, love , (*)>, 1) GW(< IOBJ-DE, love , (*)>) = log (1/2+ 1/4+1/3 + 1/2) / log(4) = 0.19 / 0.6 = 0.31LW(egg, < IOBJ-DE, love , (*)>) = log(1) = 0.W(egg, < IOBJ-DE, love , (*)>) = 0.31
Similarity between words (1) WJ(Pedro, Maria) = 2.17 / 2.61 = 0.83min( (1.03+0.11+1.03), (0.86+0.58+0.86) ) = 2.17max( (1.03+0.11+1.03), (0.86+0.58+0.86+0.31) ) = 2.61 WJ(book, novel) = 1.45 / 1.93 = 0.75min( (1.45), (1.62) ) = 1.45max((1.45), (1.62+ 0.31) ) = 1.93 WJ(book, thing) = 1.58 / 2.69 = 0.58min( (1.62+0.33), (1.27+0.31) ) = 1.58max( (1.62+0.33), (1.27+0.31+1.1) ) = 2.69
Similarity between words (2) WJ(apple, egg) = 1.4 / 1.71 = 0.81min( (1.4), (1.4) ) = 1.4max( (1.4), (1.4+0.31) ) = 1.71 WJ(apple, thing) = 1.1 / 2.68 = 0.41min( (1.4), (1.1) ) = 1.1max((1.4), (1.27+0.31+1.1) ) = 2.68 WJ(novel, thing) = 1.1 / 2.68 = 0.41min( (1.45), (1.1) ) = 1.1max((1.45), (1.27+0.31+1.1) ) = 2.68 WJ(egg, thing) = 1.41 / 2.68 = 0.51min( (1.4+0.25), (1.1+0.31) ) = 1.41max( (1.4+0.25), (1.27+0.31+1.1) ) = 2.68
Similarity between words (3) WJ(Maria, thing) = 0.31 / 2.68 = 0.09min( (0.31), (0.31) ) = 0.31max( (0.86+0.58+0.86+0.31) , (1.27+0.31+1.1) ) = 2.68 WJ(Maria, egg) = 0.31 / 2.61 = 0.11min( (0.31), (0.31) ) = 0.31max( (0.86+0.58+0.86+0.31) , (1.4+0.31) ) = 2.61 WJ(book, egg) = 0.31 / 1.93= 0.16min((0.31), (0.31) ) = 0.31max((1.62+.31), (1.4+0.31) ) = 1.93 WJ(Pedro, thing) = 0 / 2.62 = 0WJ(novel, egg) = 0 / 1.65 = 0WJ(book, apple) = 0 / 1.87 = 0;
Similarity between words(Sorting) (0.83) Pedro Maria (0.81) apple egg (0.75) book novel (0.58) thing book (0.51) thing egg (0.41) thing apple, novel (0.16) book egg (0.11) Maria egg (0.09) Maria thing (0.0) Pedro egg (0.0) novel egg
Lists of similar words Corpus “Procuradoria Geral da República” (P.G.R.) • juíz| {dirigente, presidente, subinspector, governador, árbitros} • diploma| {decreto, lei, artigo, convenção, regulamento} • decreto| {diploma, lei, artigo, nº, código} • regulamento| {estatuto, código, sistema, decreto, norma} • regra| {norma, princípio, regime, legislação, plano} • renda| {caução, indemnização, reintegração, multa, quota} • conceito| {noção, estatuto, regime, temática, montante}