1 / 15

REGRESI DENGAN VARABEL FAKTOR/ KUALLTATIF

REGRESI DENGAN VARABEL FAKTOR/ KUALLTATIF. KASUS I: FAKTOR TIDAK BERPENGARUH. REGRESI DIPERIKSA INTERAKSI. lm(formula = y1 ~ x1 * g, data = DataSimReg) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 10.00000 1.23576 8.092 5.45e-11 ***

Download Presentation

REGRESI DENGAN VARABEL FAKTOR/ KUALLTATIF

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. REGRESI DENGAN VARABEL FAKTOR/ KUALLTATIF KASUS I: FAKTOR TIDAK BERPENGARUH

  2. REGRESI DIPERIKSA INTERAKSI lm(formula = y1 ~ x1 * g, data = DataSimReg) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 10.00000 1.23576 8.092 5.45e-11 *** x1 3.00000 0.02475 121.230 < 2e-16 *** g[T.P] -0.65146 1.85766 -0.351 0.727 x1:g[T.P] 0.01779 0.03622 0.491 0.625 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.184 on 56 degrees of freedom Multiple R-squared: 0.998, Adjusted R-squared: 0.9979 F-statistic: 9476 on 3 and 56 DF, p-value: < 2.2e-16

  3. REGRESI DIPISAH lm(formula = y1 ~ g/x1 - 1, data = DataSimReg) Coefficients: Estimate Std. Error t value Pr(>|t|) gL 10.00000 1.23576 8.092 5.45e-11 *** gP 9.34854 1.38701 6.740 9.30e-09 *** gL:x1 3.00000 0.02475 121.230 < 2e-16 *** gP:x1 3.01779 0.02645 114.099 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.184 on 56 degrees of freedom Multiple R-squared: 1, Adjusted R-squared: 0.9999 F-statistic: 2.864e+05 on 4 and 56 DF, p-value: < 2.2e-16

  4. REGRESI DIGABUNG lm(formula = y1 ~ x1, data = DataSimReg) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 9.60337 0.90543 10.61 3.35e-15 *** x1 3.01053 0.01768 170.25 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.173 on 58 degrees of freedom Multiple R-squared: 0.998, Adjusted R-squared: 0.998 F-statistic: 2.899e+04 on 1 and 58 DF, p-value: < 2.2e-16

  5. FAKTOR BERPENGARUH TANPA INTERAKSI

  6. PERIKSA INTERAKSI lm(formula = y2 ~ x1 * g, data = DataSimReg) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 52.38491 2.16798 24.163 <2e-16 *** x1 2.95164 0.04341 67.988 <2e-16 *** g[T.P] -102.82667 3.25903 -31.551 <2e-16 *** x1:g[T.P] 0.05375 0.06354 0.846 0.401 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 2.078 on 56 degrees of freedom Multiple R-squared: 0.9985, Adjusted R-squared: 0.9985 F-statistic: 1.28e+04 on 3 and 56 DF, p-value: < 2.2e-16

  7. PAKSA REGRESI BERBEDA lm(formula = y2 ~ g/x1 - 1, data = DataSimReg) Coefficients: Estimate Std. Error t value Pr(>|t|) gL 52.38491 2.16798 24.16 <2e-16 *** gP -50.44177 2.43334 -20.73 <2e-16 *** gL:x1 2.95164 0.04341 67.99 <2e-16 *** gP:x1 3.00539 0.04640 64.77 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 2.078 on 56 degrees of freedom Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998 F-statistic: 8.923e+04 on 4 and 56 DF, p-value: < 2.2e-16

  8. REGRESI PARALEL lm(formula = y2 ~ g + x1 - 1, data = DataSimReg) Coefficients: Estimate Std. Error t value Pr(>|t|) gL 51.15128 1.60017 31.97 <2e-16 *** gP -48.95706 1.68119 -29.12 <2e-16 *** x1 2.97673 0.03162 94.13 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 2.072 on 57 degrees of freedom Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998 F-statistic: 1.196e+05 on 3 and 57 DF, p-value: < 2.2e-16

  9. REGRESI DIGABUNG lm(formula = y2 ~ x1, data = DataSimReg) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 46.4770 38.8685 1.196 0.23666 x1 2.0778 0.7591 2.737 0.00821 ** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 50.35 on 58 degrees of freedom Multiple R-squared: 0.1144, Adjusted R-squared: 0.09914 F-statistic: 7.493 on 1 and 58 DF, p-value: 0.008211

  10. FAKTOR BERINTERAKSI

  11. MEMERIKSA INTERAKSI lm(formula = y3 ~ g * x1, data = DataSimReg) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 59.16291 2.08027 28.44 <2e-16 *** g[T.P] -125.53198 3.12719 -40.14 <2e-16 *** x1 -1.48226 0.04166 -35.58 <2e-16 *** g[T.P]:x1 3.90656 0.06097 64.07 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.994 on 56 degrees of freedom Multiple R-squared: 0.9977, Adjusted R-squared: 0.9976 F-statistic: 8101 on 3 and 56 DF, p-value: < 2.2e-16

  12. REGRESI DIPISAH lm(formula = y3 ~ g/x1 - 1, data = DataSimReg) Coefficients: Estimate Std. Error t value Pr(>|t|) gL 59.16291 2.08027 28.44 <2e-16 *** gP -66.36907 2.33490 -28.43 <2e-16 *** gL:x1 -1.48226 0.04166 -35.58 <2e-16 *** gP:x1 2.42430 0.04452 54.45 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.994 on 56 degrees of freedom Multiple R-squared: 0.9983, Adjusted R-squared: 0.9981 F-statistic: 8028 on 4 and 56 DF, p-value: < 2.2e-16

  13. REGRESI PARALEL lm(formula = y3 ~ g + x1 - 1, data = DataSimReg) Coefficients: Estimate Std. Error t value Pr(>|t|) gL -30.4926 13.1515 -2.319 0.02403 * gP 41.5335 13.8174 3.006 0.00393 ** x1 0.3412 0.2599 1.313 0.19446 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 17.03 on 57 degrees of freedom Multiple R-squared: 0.8707, Adjusted R-squared: 0.8639 F-statistic: 127.9 on 3 and 57 DF, p-value: < 2.2e-16

  14. REGRESI DIGABUNG lm(formula = y3 ~ x1, data = DataSimReg) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -27.1295 30.8332 -0.880 0.383 x1 0.9880 0.6022 1.641 0.106 Residual standard error: 39.94 on 58 degrees of freedom Multiple R-squared: 0.04436, Adjusted R-squared: 0.02788 F-statistic: 2.692 on 1 and 58 DF, p-value: 0.1063

More Related