1 / 24

Forecasting Realized Variance Using Jumps

Forecasting Realized Variance Using Jumps. Andrey Fradkin Econ 201 4/4/2007. Introduction. Theoretical Background Summary Graphs and Statistics for data The HAR-RV-CJ Model and regressions using it. Addition of IV to the regression Analysis of possible benefits to using IV

Download Presentation

Forecasting Realized Variance Using Jumps

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Forecasting Realized Variance Using Jumps Andrey Fradkin Econ 201 4/4/2007

  2. Introduction • Theoretical Background • Summary Graphs and Statistics for data • The HAR-RV-CJ Model and regressions using it. • Addition of IV to the regression • Analysis of possible benefits to using IV • Forecasting IV-RV using jumps, do jumps effect risk premiums? • Future Work AndreyFradkin: Forecasting Realized Variance

  3. Formulas Part 1 Realized Variation: Realized Bi-Power Variation: Andrey Fradkin: Forecasting Realized Variance

  4. Formulas Part 2 • Tri-Power Quarticity • Quad-Power Quarticity Andrey Fradkin: Forecasting Realized Variance

  5. Formulas Part 3 • Z-statistics (max version) Andrey Fradkin: Forecasting Realized Variance

  6. Realized Variance and Jumps Andrey Fradkin: Forecasting Realized Variance

  7. Original HAR-RV-J Model(Taken from Andersen, Bollerslev, Diebold 2006) Andrey Fradkin: Forecasting Realized Variance

  8. The HAR-RV-CJ Model Andrey Fradkin: Forecasting Realized Variance

  9. My Regressions – 1 day forward Newey-West R^2=.4922 rv Coef. Std. Err. t P>t [95% Conf. Interval] c1 .3216361 .0778881 4.13 0.000 .168826 .4744461 c5 .3233613 .1008474 3.21 0.001 .1255069 .5212156 c22 .2478666 .0625769 3.96 0.000 .1250959 .3706373 _cons .0000285 .0000103 2.76 0.006 8.21e-06 .0000488 Andrey Fradkin: Forecasting Realized Variance

  10. Jumps Don’t Matter Newey-West R^2=.4985 rv Coef. Std. Err. t P>t [95% Conf. Interval] c1 .3262136 .0755843 4.32 0.000 .177923 .4745042 c5 .3091024 .0975148 3.17 0.002 .1177858 .5004191 c22 .2419664 .0601737 4.02 0.000 .1239103 .3600226 j1 1.584021 .9718173 1.63 0.103 -.3226096 3.490652 j5 -.8471169 1.134404 -0.75 0.455 -3.07273 1.378496 j22 3.587264 3.786084 0.95 0.344 -3.840741 11.01527 _cons .0000261 .0000101 2.59 0.010 6.35e-06 .0000459 Andrey Fradkin: Forecasting Realized Variance

  11. 1 day forward using logs Newey-West R^2=0.7737 logrv Coef. Std. Err. t P>t [95% Conf.Interval] logc1 .2407742 .041531 5.80 0.000 .1592938 .3222545 logc5 .4396577 .0592865 7.42 0.000 .3233424 .5559731 logc22 .2749495 .0418261 6.57 0.000 .19289 .357009 _cons -.4548797.1309848 -3.47 0.001 -.7118613 -.1978982 Jump terms are insignificant if added to this regression Andrey Fradkin: Forecasting Realized Variance

  12. Regression 5 days forward Newey-West F5.rv5 Coef. Std. Err. t P>t [95% Conf.Interval] c1 .1902404 .0405141 4.70 0.000 .1107546 .2697263 c5 .3198168 .1070031 2.99 0.003 .1098841 .5297494 c22 .2966428 .0782428 3.79 0.000 .1431358 .4501498 j1 -.0887148 .4668765 -0.19 0.849 -1.004694 .8272648 j5 3.129752 1.447759 2.16 0.031 .2893476 5.970156 j22 2.996998 5.738814 0.52 0.602 -8.26216 14.25616 _cons .0000419 .0000154 2.71 0.007 .0000116.0000721 Practically no change in R^2 w/o jumps Andrey Fradkin: Forecasting Realized Variance

  13. My Regressions – 22 day Newey-West R^2=.5172 F22.rv22 Coef. Std. Err. t P>t [95% Conf.Interval] c1 .1216783 .0230143 5.29 0.000 .0765252 .1668314 c5 .2577073 .1083063 2.38 0.017 .0452148 .4701998 c22 .2752547 .0909278 3.03 0.003 .096858 .4536513 j1 .2384794 .2904984 0.82 0.412 -.3314668 .8084255 j5 1.570385 2.267699 0.69 0.489 -2.878747 6.019518 j22 5.20189 9.937398 0.52 0.601 -14.29488 24.69866 _cons .0000799 .000026 3.08 0.002 .000029 .0001308 Practically no change in R^2 w/o jumps Andrey Fradkin: Forecasting Realized Variance

  14. Work on Options Data • Code for filtering through the many options • Takes the implied volatility of the option that is closest to the average of the starting and closing price, provided volume is high enough. • Calculate variables: IVt,t+h=h-1 (IVt+1 + IVt+2 … + IVt+h) • Difft= IVt-RVt Andrey Fradkin: Forecasting Realized Variance

  15. Means • Observations: 1219 Mean RV=.0002635 • Mean IV=.0003173 Mean Diff=.0000523 Diff AndreyFradkin: Forecasting Realized Variance

  16. Autocorrelation of Diff Andrey Fradkin: Forecasting Realized Variance

  17. IV is a better predictor than RV of future RV R-squared = 0.5023 Root MSE = .00026 Robust rv Coef. Std. Err. t P>t [95% Conf.Interval] iv1 1.050039 .0962552 10.91 0.000 .8611945 1.238884 j1 .6298041 .9092165 0.69 0.489 -1.154003 2.413611 _cons -.0000698.0000254 -2.74 0.006 -.0001197 -.0000199 R-squared = 0.4271 Root MSE = .00028 Robust rv Coef. Std. Err. t P>t [95% Conf. Interval] c1 .6478913 .1001823 6.47 0.000 .4513421 .8444406 j1 1.897893 .8402938 2.26 0.024 .2493062 3.546479 _cons .0000913 .0000223 4.10 0.000 .0000476 .0001351 AndreyFradkin: Forecasting Realized Variance

  18. Is Diff Significant in forecasting RV? R-squared = 0.5465 Root MSE = .00025 Robust rv Coef. Std. Err. t P>t [95% Conf.Interval] rv1 1.039644 .0941392 11.04 0.000 .8549505 1.224337 L1.Diff .7441405 .1072339 6.94 0.000 .5337562 .9545247 _cons -.0000496.0000239 -2.07 0.038 -.0000966 -2.64e-06 Andrey Fradkin: Forecasting Realized Variance

  19. Using Diff in HAR-RV-CJ Model Newey-West R-squared = .5611 rv Coef. Std. Err. t P>t [95% Conf. Interval] c1 .8782383 .1949678 4.50 0.000 .4957259 1.260751 c5 .1978388 .0789141 2.51 0.012 .0430151 .3526624 c22 -.0109185 .1064608 -0.10 0.918 -.2197868 .1979499 j1 2.379697 .984771 2.42 0.016 .4476485 4.311745 j5 -4.892927 1.876258 -2.61 0.009 -8.574008 -1.211847 j22 3.648466 3.529547 1.03 0.301 -3.276246 10.57318 L1.diff .6761671 .2257157 3.00 0.003 .2333295 1.119005 _cons -.000053 .0000262 -2.02 0.044 -.0001044 -1.55e-06 Newey-West R-squared = 0.6447 F5.rv5 Coef. Std. Err. t P>t [95% Conf. Interval] c1 .6181182 .1238336 4.99 0.000 .3751648 .8610715 c5 .2326215 .107413 2.17 0.031 .0218843 .4433588 c22 .1019241 .0628666 1.62 0.105 -.021416 .2252642 j1 .5261682 .5163181 1.02 0.308 -.4868141 1.53915 j5 -.0505589 1.846144 -0.03 0.978 -3.672573 3.571455 j22 3.228812 5.368064 0.60 0.548 -7.302979 13.7606 L1.Diff .5242109 .143786 3.65 0.000 .2421122 .8063096 _cons -.0000199 .0000132 -1.51 0.131 -.0000457 5.96e-06 Andrey Fradkin: Forecasting Realized Variance

  20. Using Diff in HAR-RV-CJ Model cont. Newey-West R-Squared: 0.5676 F22.rv22 Coef. Std. Err. t P>t [95% Conf. Interval] c1 .4739452 .0803304 5.90 0.000 .31634 .6315504 c5 .1862154 .1068758 1.74 0.082 -.0234709 .3959018 c22 .115742 .0742476 1.56 0.119 -.0299291 .2614131 j1 .7448536 .3328171 2.24 0.025 .0918788 1.397828 j5 -1.032086 2.406812 -0.43 0.668 -5.754162 3.689989 j22 5.355446 10.28448 0.52 0.603 -14.82233 25.53322 L1.diff .4314511 .0938983 4.59 0.000 .247226 .6156761 _cons .0000285 .000021 1.36 0.175 -.0000127 .0000696 Andrey Fradkin: Forecasting Realized Variance

  21. Predicting Diff Using Jumps Newey-West R-squared = 0.1235 diff Coef. Std. Err. t P>t [95% Conf. Interval] c1 -.1973631 .0706515 -2.79 0.005 -.3359759 -.0587504 c5 -.1441686 .063503 -2.27 0.023 -.2687566 -.0195806 c22 .1650903 .0995486 1.66 0.097 -.0302165 .3603971 j1 -1.591713 .8951938 -1.78 0.076 -3.348014 .1645889 j5 7.162149 1.46073 4.90 0.000 4.296309 10.02799 j22 -3.263902 2.958828 -1.10 0.270 -9.068895 2.541092 _cons .0000949 .0000215 4.42 0.000 .0000528 .0001371 Newey-West R-squared = 0.0548 F5.diff Coef. Std. Err. t P>t [95% Conf. Interval] c1 .025571 .0435225 0.59 0.557 -.0598172 .1109593 c5 -.3173051 .1317263 -2.41 0.016 -.5757431 -.0588671 c22 .2137709 .1007057 2.12 0.034 .0161933 .4113484 j1 -.6373502 .8629953 -0.74 0.460 -2.330488 1.055787 j5 -1.319912 1.440435 -0.92 0.360 -4.145946 1.506122 j22 -2.634389 3.527186 -0.75 0.455 -9.554485 4.285707 _cons .0000781 .0000198 3.940.000 .0000392 .0001169 Andrey Fradkin: Forecasting Realized Variance

  22. Predicting Diff Using Jumps Newey-West R-squared = 0.0072 F22.diff Coef. Std. Err. t P>t [95% Conf. Interval] c1 .0278554 .029698 0.94 0.348 -.0304108 .0861216 c5 -.0189465 .0709693 -0.27 0.790 -.1581855 .1202924 c22 .0304386 .0706686 0.43 0.667 -.1082103 .1690875 j1 .7447953 .23193 3.21 0.001 .289758 1.199833 j5 -2.931345 2.05406 -1.43 0.154 -6.961327 1.098638 j22 .6472574 5.335948 0.12 0.903 -9.821655 11.11617 _cons .0000405 .0000126 3.21 0.001 .0000158 .0000653 Adding or removing jumps does not effect R-Squared Andrey Fradkin: Forecasting Realized Variance

  23. Jumps matter if regressing Diff on IV and Jumps Newey-West R-Squared: .1018 diff Coef. Std. Err. t P>t [95% Conf. Interval] iv1 -.5454239 .2838641 -1.92 0.055 -1.102344 .0114957 iv5 -.0509571 .1503595 -0.34 0.735 -.3459508 .2440366 iv22 .5652849 .1773301 3.19 0.001 .217377 .9131929 j1 -1.557493 .9155883 -1.70 0.089 -3.353807 .2388207 j5 10.23682 2.056567 4.98 0.000 6.201993 14.27165 j22 -9.462402 3.553551 -2.66 0.008 -16.4342 -2.490609 _cons .0000605 .0000219 2.76 0.006 .0000175 .0001036 Newey-West R-Squared: .16 diff Coef. Std. Err. t P>t [95% Conf. Interval] L1.diff .2575236 .0986853 2.61 0.009 .0639104 .4511368 iv1 -.5944392 .2546254 -2.33 0.020 -1.093995 -.094883 iv5 .1370913 .200045 0.69 0.493 -.2553824 .529565 iv22 .4336471 .1536846 2.82 0.005 .1321293 .7351649 j1 -1.37075 .946662 -1.45 0.148 -3.228031 .4865313 j5 8.862341 1.982412 4.47 0.000 4.972993 12.75169 j22 -9.133631 2.995484 -3.05 0.002 -15.01055 -3.256713 _cons .0000459 .000015 3.06 0.002 .0000165 .0000752 Andrey Fradkin: Forecasting Realized Variance

  24. Future Work • Do same regressions on data for other stocks. • Add volatility of SPY to regression terms. • See if there are possible applications of GARCH models for these regressions. • Experiment with other alphas. Andrey Fradkin: Forecasting Realized Variance

More Related