1 / 12

Fuzzy sets and applications

Fuzzy sets and applications. t-norm. t –norm 是模糊理論中常見的數學式子表示法,必遵守下列4種定律 t:[0,1] × [0,1] → [0,1] for each a,b,c ∈ [0,1]; t ( a,b ) = t( b,a ) ( commutativity ) t( a,t ( b,c )) = t(t( a,b ),c) ( associativity ) t( a,b ) ≤ t( a,c ),if b ≤ c ( monotonicity )

petula
Download Presentation

Fuzzy sets and applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fuzzy sets and applications

  2. t-norm • t –norm是模糊理論中常見的數學式子表示法,必遵守下列4種定律 • t:[0,1]×[0,1] →[0,1] for each a,b,c∈ [0,1]; • t(a,b) = t(b,a) (commutativity) • t(a,t(b,c)) = t(t(a,b),c) (associativity) • t(a,b) ≤t(a,c),if b ≤c (monotonicity) • t(a,0) = 0 and t(a,1) = a, for any a ∈[0,1] (boundary conditions)

  3. 基本介紹 • X。A=B max{t(x1,a11),t(x2,a21),…,t(xm,am1)}=b1, max{t(x1,a12),t(x2,a22),…,t(xm,am2)}=b2, . . . max{t(x1,a1n),t(x2,a2n),…,t(xm,amn)}=bn

  4. A∨B=A,B中取其大者 • A∧B=A,B中取其小者 • a。b =∨(ai∧bi) (i = 1~n) • a⊙b =∧(ai∨bi) (i = 1~n)

  5. Examples • a。b=(0.1∧0.3) ∨(0.5∧0) ∨(0∧0.8) ∨(0.6∧0.2) =0.2; • a⊙b =(0.1∨0.3)∧(0.5∨0)∧(0∨0.8)∧(0.6∨0.2)=0.3;

  6. 生活實例 假設某人屬於高個子的程度為0.9,而屬於胖子的程度為0.4,那麼他屬於高個子或胖子的程度為0.9 ∨0.4=0.9; 他屬於高個子且胖子的程度為0.9 ∧0.4=0.4。

  7. 任何模糊集合的問題都可透過解模糊來轉化為普通集合論解決,而普通集合論則可透過模糊化來轉化為模糊集合。而在任何實際應用中都免不了要經過這2種步驟。任何模糊集合的問題都可透過解模糊來轉化為普通集合論解決,而普通集合論則可透過模糊化來轉化為模糊集合。而在任何實際應用中都免不了要經過這2種步驟。

  8. 應用 • AI人工智慧 • 洗衣機

More Related