1 / 54

DIAGNOSIS MOLEKULAR PENYAKIT

DIAGNOSIS MOLEKULAR PENYAKIT. Agustina Setiawati , MSc ., Apt. DIAGNOSIS MOLEKULAR PENYAKIT GENETIK. Agustina Setiawati , MSc ., Apt. OVALOSITOSIS. d elesi 27 bp. Tm = 4(G+C) + 2(A+T). Hasil PCR ovalositosis. Mana yang: sehat ? penderita ?. SICKLE CELL ANEMIA.

peyton
Download Presentation

DIAGNOSIS MOLEKULAR PENYAKIT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DIAGNOSIS MOLEKULARPENYAKIT AgustinaSetiawati, MSc., Apt

  2. DIAGNOSIS MOLEKULARPENYAKIT GENETIK AgustinaSetiawati, MSc., Apt

  3. OVALOSITOSIS delesi 27 bp

  4. Tm = 4(G+C) + 2(A+T)

  5. Hasil PCR ovalositosis Mana yang: sehat ? penderita ?

  6. SICKLE CELL ANEMIA

  7. GLUTAMAT VALIN • Kodonglutamat : GUU, GUC, GUA, GUG • Kodonvalin : GAA, GAG • PengenalanMstII: -CCTNAGG

  8. PemotonganenzimMstII

  9. PemotonganenzimCvnI

  10. THALLASEMIA • Mutasi pada gena globin sehingga jumlah/aktivitas produk menurun • Mutasi pada promoter – jumlah turun • Mutasi pada gena struktural – jumlah tetap aktivitas turun

  11. Thallesemia

  12. TIDAK SEMUA MUTASI PADA LOKUS RESTRIKSI • PCR/OLA • POLYMERASE CHAIN REACTION/ • OLIGONUCLEOTIDE LIGATION ASSAY • MUTASI PADA 106 A:T KE G:C • TARGET DIAMPLIFIKASI –PCR • HIBRIDISASI : PELACAK X DAN Y • LIGASI

  13. PCR/OLA • Like sickle cell anemia many genetic diseases are caused by mutant genes. • E.g.? • Many diseases are caused by a single nucleotide (nt) change in the wild type gene. • A single nt change can be detected by PCR/OLA ( oligonucleotide ligation assay). • E.g. The normal gene has A at nt position 106 and mutant has a G. • 2 short oligonucleotides (oligo) are synthesized • Oligo 1 (probe x) is complementary to the wild type has A at 106 (3’ end).

  14. PCR/OLA • Oligo 2 ( probe y) has G at 107 (5’ end). • The two probes are incubated with the PCR amplified target DNA. • For the wild type the two probes anneal so that the 3’end of probe x is next to the 5’end of probe y. • For the mutant gene the nt at the 3’ end of probe x is a mismatch and does not anneal.

  15. PCR/OLA • DNA ligase is added. The two probes will only ligate if the two probes are perfectly aligned (as in the wild type). • To determine if the mutant or wild type gene is present it is necessary to detect for ligation. • Probe x is labeled at 5’ end with biotin • Probe x is labeled at 5’ end with digoxygenin.

  16. PCR/OLA • Digoxygenin serves as an antibody binding indicator. • After washing a colourless substrate is added. • If a coloured substrate appears this is indicative that the biotin probe (x) ligated to the dioxygenin probe (Y) and that the wild type gene is present.

  17. PCR/OLA

  18. PCR/OLA

  19. DETEKSI MUTASI SATU BASA DENGAN PCR

  20. DETEKSI MUTASI DI BB TEMPAT • PCR • HIBRIDISASI • PELACAK 1, 2, 3, 4, 5, 6, 7, 8 PADA MEMBRAN • PCR BGN TARGET TERMUTASI+BIOTIN • NORMAL (-), MUTAN (+) • HIBRIDISASI

  21. Analisis SSCP, mobility shift

  22. Enzymes as Therapeutic Agents/ DNase1 • Cystic fibrosis (CF) is one of the most fatal heredity diseases among European and their descendants with ~30,000 cases in the US and 23,000 in Canada. • Furthermore among European descendants it occurs in 1 in 2,500 live birth and 1 in 25 are carriers. • It is caused by more than 500 different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. • Individuals with CF are highly susceptible to bacterial infection and antibiotic treatment often results in resistant strains.

  23. DNase 1 • A thick mucus which is a results of: • Alignate produced by bacteria • DNA from lysed cells • Leucocytes which accumulate due to the infection • Makes breathing difficult. • Scientist at Genentech isolated the gene for DNase1 • The purified enzyme was delivered as an aerosol to the lung where it hydrolysed the DNA into short oligionucleotides. • This decrease the viscosity in the lungs and made breathing easier.

  24. Alginate Lyase • Alginate is a polysaccharide polymer that is produced by seaweed and some soil and marine bacteria. • The excretion of alginate by Pseudomonas aeruginosa of patients with CF contributes to the viscosity in the lung. • The enzyme alginate lyase can liquefy bacteria alginate. • Alginate lyase was isolate from Flavobacteriumsp. and cloned into E. coli.

  25. Aliginate Lyse • The expressed gene produced a protein of 69,000 Da. • The 69,000 Da protein produced a proteolytic enzyme of 6,000 Da. • The remain 63,000 Da protein was cleaved to produce a 43,000 Da which is able to liquefy bacterial alginate. • Combined with DNase1, alginate lyse is able to reduce the mucus in the lungs of patients with CF.

  26. DNAse 1 and Alginate lyase

  27. CYTIC FIBROSIS • Delesi satu asam amino fenilalanin pada kodon 508 CFTR (Cytic Fibrosis Transmembrane Regulator) • Bagaimana cara mendeteksinya

  28. Deteksi fusi gena - leukemia • Translokasi kromosom 9 dan 22 pada q34 dan q11 • Translokasi kromosom 11 dam 17 pada q 22 dan q21 • Bagimana cara mendeteksinya ?

  29. Gleevec for chronic myeloid leukaemia (CML) • .

  30. TODAY Deteksi Molekuler Penyakit Genetik TERIMA KASIH

  31. ENZYME BASED • ANTIBODY BASED • DNA BASED DIAGNOSIS MOLEKULARPENYAKIT INFEKSI AgustinaSetiawati, MSc., Apt

  32. Problems? Traditionally diagnosis of infection based on finding parasite • some parasites morphologically indistinguishable • parasites hidden in various host tissue

  33. Skin

  34. Traditional diagnosis of Malaria

  35. Lumbar Puncture for Sleeping sickness

  36. THE SOLUTION ? Current laboratory techniques not entirely satisfactory Need trained staff, equipment, slow throughput Rapid molecular tests being developed

  37. ENZYME BASED (-) (+) • simple technique. • large number of typing enzymes available • many samples typed at same time • power to distinguish morphologically similar parasites. • Significant tissue needed for analysis visceral leishmaniasis requires spleen, liver, • Technique not rapid  can take days • Sometimes incorrect diagnosis  enzyme labile • Technique simple but equipment • expensive

  38. Iso-enzymes separated by charge: Isoelectric focusing equipment

  39. Enzymes separated by size: SDS-PAGE

  40. ANTIBODY BASED (-) (+) • rapid easy field based tests can be developed • useful for both individual & mass population screening • cannot distinguish past/ present infections • cannot distinguish morphologically similar parasites • expensive to develop • significant research prior to commercialization

  41. Enzyme-Linked Immunosorbant Assay (ELISA) Positive Negative

  42. DNA BASED • Nonculturable agents • Human papilloma virus • Hepatitis B virus • Fastidious, slow-growing agents • Mycobacterium tuberculosis • Legionellapneumophilia • Highly infectious agents that are dangerous to culture • Francisellatularensis • Brucella species • Coccidioidisimmitis

  43. DNA BASED • In situ detection of infectious agents • Helicobacter pylori • Toxoplasma gondii • Agents present in low numbers • HIV in antibody negative patients • CMV in transplanted organs • Organisms present in small volume specimens • Intra-ocular fluid • Forensic samples

  44. DNA BASED • Restriction endonuclease analysis • PCR • DNA Hybridization • DNA fingerprinting

More Related