1 / 81

3-D Computer Vision CSc 83020

3-D Computer Vision CSc 83020. Image Processing I/Filtering. Image Processing I/Filtering. Convolution (1-D) Linear Shift Invariant Systems Convolution (2-D) Application: Noise: Filtering: Averaging, Smoothing, Median. Convolution (Important!). =. h. f. g.

pfielder
Download Presentation

3-D Computer Vision CSc 83020

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 3-D Computer VisionCSc 83020 Image Processing I/Filtering 3-D Computer Vision 83020 – Ioannis Stamos

  2. Image Processing I/Filtering • Convolution (1-D) • Linear Shift Invariant Systems • Convolution (2-D) • Application: Noise: • Filtering: Averaging, Smoothing, Median.. 3-D Computer Vision 83020 – Ioannis Stamos

  3. Convolution (Important!) = h f g Used for: Derivatives, Edges, Matching, … 3-D Computer Vision 83020 – Ioannis Stamos

  4. Convolution = h f g 3-D Computer Vision 83020 – Ioannis Stamos

  5. Convolution f(ξ) x ξ h(ξ) 3-D Computer Vision 83020 – Ioannis Stamos

  6. Convolution f(ξ) x ξ h(ξ) h(-ξ) 3-D Computer Vision 83020 – Ioannis Stamos

  7. Convolution f(ξ) x ξ h(ξ) h(-ξ) h(x-ξ) x ξ

  8. Convolution f(ξ) h(x-ξ) x ξ f(ξ) *h(x-ξ) x ξ g(x) : area under curve 3-D Computer Vision 83020 – Ioannis Stamos

  9. Convolution f(ξ) h(x-ξ) x ξ f(ξ) *h(x-ξ) ξ x g(x) : area under curve Calculate g(x) for all x!!

  10. Convolution g(x) x f(x) h(x) Calculate g(x) for all x!! => g(x): 1-D function 3-D Computer Vision 83020 – Ioannis Stamos

  11. Example a(ξ) b(ξ) 1 1 ξ ξ -1 1 -1 1 c = a * b ? 3-D Computer Vision 83020 – Ioannis Stamos

  12. Example a(ξ) b(-ξ) 1 1 ξ ξ -1 1 -1 1 3-D Computer Vision 83020 – Ioannis Stamos

  13. Example a(ξ) b(-ξ) 1 1 ξ ξ -1 1 -1 1 a(ξ) 1 b(x-ξ) ξ -1 1 x x<-2 3-D Computer Vision 83020 – Ioannis Stamos

  14. Example a(ξ) b(-ξ) 1 1 ξ ξ -1 1 -1 1 a(ξ) 1 b(x-ξ) ξ -1 1 x x=-2 3-D Computer Vision 83020 – Ioannis Stamos

  15. Example a(ξ) b(-ξ) 1 1 ξ ξ -1 1 -1 1 a(ξ) 1 b(x-ξ) ξ -1 1 x -2<x<-1 3-D Computer Vision 83020 – Ioannis Stamos

  16. Example a(ξ) b(-ξ) 1 1 ξ ξ -1 1 -1 1 a(ξ) 1 b(x-ξ) ξ -1 1 x -2<x<-1 3-D Computer Vision 83020 – Ioannis Stamos

  17. Example a(ξ) b(-ξ) 1 1 ξ ξ -1 1 -1 1 a(ξ) 1 b(x-ξ) ξ -1 1 x x=-1 3-D Computer Vision 83020 – Ioannis Stamos

  18. Example a(ξ) b(-ξ) 1 1 ξ ξ -1 1 -1 1 a(ξ) 1 b(x-ξ) ξ -1 1 x -1<x<0 3-D Computer Vision 83020 – Ioannis Stamos

  19. Example a(ξ) b(-ξ) 1 1 ξ ξ -1 1 -1 1 a(ξ) 1 b(x-ξ) ξ -1 1 x x=0 3-D Computer Vision 83020 – Ioannis Stamos

  20. Example a(ξ) b(-ξ) 1 1 ξ ξ -1 1 -1 1 a(ξ) 1 b(x-ξ) ξ -1 1 x 0<x<1 3-D Computer Vision 83020 – Ioannis Stamos

  21. Example a(ξ) b(-ξ) 1 1 ξ ξ -1 1 -1 1 a(ξ) 1 b(x-ξ) ξ -1 1 x x=1 3-D Computer Vision 83020 – Ioannis Stamos

  22. Example a(ξ) b(-ξ) 1 1 ξ ξ -1 1 -1 1 a(ξ) 1 b(x-ξ) ξ -1 1 x 1<x<2 3-D Computer Vision 83020 – Ioannis Stamos

  23. Example a(ξ) b(-ξ) 1 1 ξ ξ -1 1 -1 1 a(ξ) 1 b(x-ξ) ξ -1 1 x x=2 3-D Computer Vision 83020 – Ioannis Stamos

  24. Example a(ξ) b(-ξ) 1 1 ξ ξ -1 1 -1 1 a(ξ) 1 b(x-ξ) ξ -1 1 x x>2 3-D Computer Vision 83020 – Ioannis Stamos

  25. Example a(ξ) b(ξ) 1 1 ξ ξ -1 1 -1 1 c = a * b c(x) 1 x -2 -1 1 2 3-D Computer Vision 83020 – Ioannis Stamos

  26. Properties of Convolution • Commutativity: b * a = a * b. • Associativity: (a * b) * c = a * (b * c) • Cascaded system g f h1 h2 g f h1*h2 Equivalent Systems g f h2*h1 3-D Computer Vision 83020 – Ioannis Stamos

  27. Convolution Discrete f(ξ) m m1 m2 ξ h(ξ) n1 n2 Discrete samples of continuous signal. Sampling at regular intervals. Example : Scanline 3-D Computer Vision 83020 – Ioannis Stamos

  28. Convolution Discrete f(ξ) m-n2 m m-n1 m1 m2 ξ h(ξ) n1 n2 3-D Computer Vision 83020 – Ioannis Stamos

  29. One Scan Line: 1-D discrete signal f(ξ), m1=0, m2=450. 0 450 3-D Computer Vision 83020 – Ioannis Stamos

  30. One Scan Line: 1-D discrete signal f(ξ), m1=0, m2=450. 1/9 0 450 f*h = ? -4 4 h(ξ), n1=-4, n2=4. 3-D Computer Vision 83020 – Ioannis Stamos

  31. One Scan Line: 1-D discrete signal f(ξ) 1/9 h(m- ξ) m-4 m m+4 0 450 m f*h = ?

  32. One Scan Line: 1-D discrete signal f(ξ) 1/9 h(m- ξ) m-4 m m+4 0 450 m f*h = ?

  33. One Scan Line: 1-D discrete signal f(ξ), m1=0, m2=450. 0 450 h: filter or mask. f*h: filtered version of f. In this case h spatially averages f in a neighborhood of 9 samples.

  34. Recap • 1-D Convolution • Continuous vs. Discrete. • Finite vs. Infinite signals (spatial domain). • Filtering. 3-D Computer Vision 83020 – Ioannis Stamos

  35. Linear Shift Invariant Systems f(x) g(x) Linearity: f1(x) g1(x) f2(x) g2(x) af1(x)+bf2(x) ag1(x)+bg2(x) 3-D Computer Vision 83020 – Ioannis Stamos

  36. Linear Shift Invariant Systems f(x) g(x) Shift Invariance: f(x-a) g(x-a) g(x) f(x) x x g(x) f(x-a) x a x a

  37. Convolution Used for: Derivatives, Edges, Matching, … Convolution: LINEAR & SHIFT INVARIANT f(x) g(x) h(x) Also, any LSIS is doing a CONVOLUTION! 3-D Computer Vision 83020 – Ioannis Stamos

  38. Properties of Convolution • Commutativity: b * a = a * b. • Associativity: (a * b) * c = a * (b * c) • Cascaded system g f h1 h2 g f h1*h2 Equivalent Systems g f h2*h1 3-D Computer Vision 83020 – Ioannis Stamos

  39. Example of LSIS: g f Defocused image g: Processed version of Focused image f. Ideal Lens: f(x) g(x) LSIS Linearity: Brightness Variations. Shift Invariance: Scene Movement. Note: Not valid for lenses with non-linear distortions (aberrations). Study of LSIS leads to useful algorithms for processing images!

  40. System as a black box g f h Can we find h? What f will give us g=h? 1/(2ε) δ(x) δ(x) δ(x) 1/(2ε) 1/(2ε) Decrease ε Decrease ε x x x 2ε 2ε 2ε

  41. System as a black box δ(x) Unit Impulse Function: 1/(2ε) x -1 1 2ε Impulse Response f(x)=δ(x) h(x) IMPULSE RESPONSE 3-D Computer Vision 83020 – Ioannis Stamos

  42. Image Formation Scene Image Optical System Point Source δ(x) Point Spread Function h(x) Optical System In an ideal system h(x)=δ(x) Optical Systems are never ideal! Human Eye: Point Spread Function…. 3-D Computer Vision 83020 – Ioannis Stamos

  43. 2-D Convolution = g(x,y) Output Image h(x,y) Filter f(x,y) Input Image

  44. Discrete Convolution y (0,0) x g (larger than f) f h

  45. Discrete Convolution f h

  46. Discrete Convolution – 2D flip 3-D Computer Vision 83020 – Ioannis Stamos

  47. Discrete Convolution 1 2 3 4 5 4 3 2 1 2 6 10 14 16 14 10 6 2 3 10 20 28 32 28 20 10 3 4 14 28 42 48 42 28 14 4 5 16 32 48 57 48 32 16 5 4 14 28 42 48 42 28 14 4 3 10 20 28 32 28 20 10 3 2 6 10 14 16 14 10 6 2 1 2 3 4 5 4 3 2 1 1 1 1 1 1 1 2 2 2 1 1 2 3 2 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 1 2 3 2 1 1 2 2 2 1 1 1 1 1 1 = g f h 3-D Computer Vision 83020 – Ioannis Stamos

  48. Discrete Convolution 1 1 1 1 1 1 2 2 2 1 1 2 3 2 1 1 2 2 2 1 1 1 1 1 1 1 2 3 4 5 4 3 2 1 2 6 10 14 16 14 10 6 2 3 10 20 28 32 28 20 10 3 4 14 28 42 48 42 28 14 4 5 16 32 48 57 48 32 16 5 4 14 28 42 48 42 28 14 4 3 10 20 28 32 28 20 10 3 2 6 10 14 16 14 10 6 2 1 2 3 4 5 4 3 2 1 1 1 1 1 1 1 2 2 2 1 1 2 3 2 1 1 2 2 2 1 1 1 1 1 1 3-D Computer Vision 83020 – Ioannis Stamos

  49. Discrete Convolution 1 1 1 1 1 1 2 2 2 1 1 2 3 2 1 1 2 2 2 1 1 1 1 1 1 12 3 4 5 4 3 2 1 2 6 10 14 16 14 10 6 2 3 10 20 28 32 28 20 10 3 4 14 28 42 48 42 28 14 4 5 16 32 48 57 48 32 16 5 4 14 28 42 48 42 28 14 4 3 10 20 28 32 28 20 10 3 2 6 10 14 16 14 10 6 2 1 2 3 4 5 4 3 2 1 1 1 1 1 1 1 2 2 2 1 1 2 3 2 1 1 2 2 2 1 1 1 1 1 1 3-D Computer Vision 83020 – Ioannis Stamos

  50. Discrete Convolution 1 1 1 1 1 1 2 2 2 1 1 2 3 2 1 1 2 2 2 1 1 1 1 1 1 1 2 3 4 5 4 3 2 1 2 6 10 14 16 14 10 6 2 3 10 20 28 32 28 20 10 3 4 14 28 42 48 42 28 14 4 5 16 32 48 57 48 32 16 5 4 14 28 42 48 42 28 14 4 3 10 20 28 32 28 20 10 3 2 6 10 14 16 14 10 6 2 1 2 3 4 5 4 3 2 1 1 1 1 1 1 1 2 2 2 1 1 2 3 2 1 1 2 2 2 1 1 1 1 1 1 3-D Computer Vision 83020 – Ioannis Stamos

More Related