50 likes | 73 Views
1. 2. 3. 4. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = {image} , {image}. fmax = 270, fmin = 0 fmax = 30, fmin = - 30 fmax = 270, fmin = - 270 fmax = 0, fmin = - 30. 1. 2. 3. 4. 5.
E N D
1. 2. 3. 4. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = {image} , {image} • fmax = 270, fmin = 0 • fmax = 30, fmin = - 30 • fmax = 270, fmin = - 270 • fmax = 0, fmin = - 30
1. 2. 3. 4. 5. Use Lagrange multipliers to find the maximum value of the function subject to the given constraint. f (x, y, z) = {image} , {image} = 1. • f (x, y, z) = {image} • f (x, y, z) = 0.6 • f (x, y, z) = {image} • f (x, y, z) = {image} • f (x, y, z) = 0.7
1. 2. 3. 4. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraints. Then select the correct answer below. f (x, y, z) = 6 x - y - 9 z; x + 3 y - z = 0, {image} . • {image} • {image} • {image} • {image}
Use Lagrange multipliers to find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in plane x + 4 y + 5 z = 60. • V = 100 • V = 409 • V = 80 • V = 400
Find the maximum value of {image} given that x1, x2, ..., xn are positive numbers and x1 + x2 + ... + xn = c, where c is a constant. Find f for n = 3 and c = 28.5 and select the correct answer below. • f = 3 • f = 9 • f = 9.5 • f = 6.5