1 / 20

CDAE 266 - Class 24 Nov. 27 Last class: Result of Quiz 5 5. Inventory decisions

CDAE 266 - Class 24 Nov. 27 Last class: Result of Quiz 5 5. Inventory decisions Quiz 6 (take-home) Today: Result of group project 2 5. Inventory decisions Next class: 5. Inventory decisions. CDAE 266 - Class 24 Nov. 27 Important dates:

phiala
Download Presentation

CDAE 266 - Class 24 Nov. 27 Last class: Result of Quiz 5 5. Inventory decisions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CDAE 266 - Class 24 Nov. 27 Last class: Result of Quiz 5 5. Inventory decisions Quiz 6 (take-home) Today: Result of group project 2 5. Inventory decisions Next class: 5. Inventory decisions

  2. CDAE 266 - Class 24 Nov. 27 Important dates: Problem set 5: due Thursday, Dec. 6 Problems 6-1, 6-2, 6-3, 6-4, and 6-13 from the reading package Final exam, 8:00-11:00am, Monday, Dec. 10 $10 for the reading packages: due Thursday, Nov. 29

  3. N = 55 Range = 70 – 95 Average = 85.1 Comments: -- You need to solve the LP model only once and all the questions can be answered according to the computer reports -- Analysis of the options (a) More straw (b) One more box of 10 handles at $25 per box (c) 4 more hours of labor at $50 (d) Options (b) and option (c) Result of group project 2

  4. 5. Inventory analysis and applications 5.1. Basic concepts 5.2. Inventory cost components 5.3. Economic order quantity (EOQ) model 5.4. Inventory policy with backordering 5.5. Inventory policy and service level 5.6. Production and inventory model

  5. 5.3. The economic order quantity (EOQ) model 5.3.1. Assumptions: -- One item with constant demand (A) -- Lead time = 0 -- No backordering -- All the cost parameters are known

  6. 5.3. The economic order quantity (EOQ) model 5.3.2. A graphical presentation 5.3.3. Mathematical model -- Variable definitions: k = fixed cost per order A = annual demand (units per yr.) c = price h = annual holding cost per $ value T = time between two orders

  7. A graphical presentation of the EOQ model: The constant environment described by the EOQ assumptions leads to the following observation THE OPTIMAL EOQ POLICY ORDERS THE SAME AMOUNT EACH TIME. Q Q Q This observation results in the inventory profile below:

  8. 5.3. The economic order quantity (EOQ) model 5.3.3. Mathematical model -- Objective: choose order quantity (Q) to minimize the total annual inventory cost What is the reorder point (R)?

  9. 5.3. The economic order quantity (EOQ) model 5.3.3. Mathematical model -- Total annual inventory cost = annual ordering costs + annual holding cost + annual item costs (a) Annual order costs Annual demand = A Quantity of each order = Q Number of orders per yr. = A/Q Fixed cost per order = k Annual ordering costs = k (A/Q)

  10. 5.3. The economic order quantity (EOQ) model 5.3.3. Mathematical model -- Total annual inventory cost = annual ordering costs + annual holding cost + annual item costs (b) Annual holding costs Average inventory = Q/2 Annual holding cost per unit = hc Annual holding cost = (Q/2)*hc

  11. Holding Costs (Carrying costs) Cost of capital Storage space cost Costs of utilities Labor Insurance Security Theft and breakage Annual unit holding cost h = Annual holding cost rate (cost per dollar value) c = Unit value (price) h * c

  12. 5.3. The economic order quantity (EOQ) model 5.3.3. Mathematical model -- Total annual inventory cost = annual ordering costs + annual holding cost + annual item costs (c) Annual item cost Average demand = A Cost per unit (price) = c Annual item cost = Ac

  13. 5.3. The economic order quantity (EOQ) model 5.3.3. Mathematical model -- Total annual inventory cost = annual order costs + annual holding cost + annual item costs -- Total annual relevant (variable) cost: -- Examples

  14. 5.3. The economic order quantity (EOQ) model 5.3.3. Mathematical model -- Derive the optimal solution: (1) A graphical analysis: the sum of the two costs is at the minimum level when the annual holding cost is equal to the annual ordering cost: => => =>

  15. 5.3. The economic order quantity (EOQ) model 5.3.3. Mathematical model -- Derive the optimal solution: (2) A mathematical analysis: At the minimum point of the curve, the slope (derivative) is equal to zero: => =>

  16. 5.3. The economic order quantity (EOQ) model 5.3.4. Examples (1) Liquor store (pp. 209-211) Available information: A = 5200 cases/yr k = $10/order c = $2 per case h = $0.20 per $ per yr. (a) Current policy: Q = 100 cases/order R = (5200/365) * 1 = 15 cases T = Q/A = 100/5200 (year) = 7 days TC = $540 per year (see page 210) (b) Optimal policy: Q* = 510 cases/order R = (5200/365) * 1 = 15 cases T = Q*/A = 510/5200 (year) =36 days TC = $204 per year If the retail price is $3 per case, Gross profit = 5200*3 – 5200*2 – 204 = $4996

  17. Take-home class exercise • (Tuesday, Nov. 27) • 1. Draw a graph to show the following inventory policy for • a business with no backordering: the annual demand is • 3650 units and the business opens 365 days a year, the • order quantity is 305 units and the lead time is 4 days. • If some customers of the above business are willing to • take backorders and the maximum backorders are 50 units, draw another graph to show the inventory policy (there is no change in order quantity and lead time) • 3. Take-home exercise: Example on pp. 215-216 with the annual demand (A) increased to 1200 units and the lead time to be 3 days.

  18. 5.3. The economic order quantity (EOQ) model 5.3.5. Lead time (L), reorder point (R) and safety stock (SS) and their impacts (1) Inventory policy: Q: order quantity R: reorder point (Note that R is related to T but they are two different variables) (2) In the basic EOQ model: Q* = L = 0 ==> R* = L x A = 0 (3) If L > 0, R= L x A (the units of L & A must be consistent)

  19. 5.3. The economic order quantity (EOQ) model 5.3.5. Lead time (L), reorder point (R) and safety stock (SS) and their impacts (4) If the lead time is zero (L=0) and the co. wants to keep a safety stock (SS), R = L x A + SS = SS (5) If the lead time is greater than zero (L>0) and the co. wants to keep a safety stock, R = L x A + SS (6) Impacts of L & SS on R*, Q* and TC: No impact on Q* L ==> no impact on TC SS ==> increase TC by (hc * SS)

  20. 5.4. Inventory policy with backordering 5.4.1. A graphical presentation (page 214) A = Annual demand (e.g., 7300 kg per year) Q = order quantity [e.g., 200 kg per order (delivery)] S = Maximum on-hand inventory (e.g, 150 kg) Q - S = Maximum backorders (e.g., 50 kg) T = A/Q = time for each inventory cycle (e.g., T = 200/7300 = 0.0274 yr = 10 days) T1 = S/A = the time with on-hand inventory (e.g., T1 = 150/7300 = 0.0206 yr = 7.5 days) T2 = (Q-S)/A = T - T1 (e.g., T2= 50/7300 = 0.00685 yr = 2.5 days) T1/T = Proportion of time with on-hand inventory T2/T = Proportion of time without on-hand inventory Lead time and reorder point (e.g., L = one day)

More Related