1 / 27

The Carbon Cycle Data Assimilation System (CCDAS)

CarboEurope IP Integration Meeting, 22–24 August 2005. The Carbon Cycle Data Assimilation System (CCDAS). Wolfgang Knorr QUEST/U Bristol, formerly Max-Planck Institute for Biogeochemistry, Jena with contributions from: Marko Scholze (QUEST), Jens Kattge (MPI Jena),

philippa
Download Presentation

The Carbon Cycle Data Assimilation System (CCDAS)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CarboEurope IP Integration Meeting, 22–24 August 2005 The Carbon Cycle Data Assimilation System (CCDAS) Wolfgang Knorr QUEST/U Bristol, formerly Max-Planck Institute for Biogeochemistry, Jena with contributions from: Marko Scholze (QUEST), Jens Kattge (MPI Jena), Nadine Gobron (JRC/IES, Ispra), Thomas Kaminski, Ralf Giering (FastOpt) and Peter Rayner (LSCE)

  2. Overview • Carbon Cycle Observations • Assimilation of Eddy Covariance Data • Assimilation of Satellite "Greenness" • Assimilation of Atmospheric CO2 Data • Outlook

  3. Fluxnet Eddy Covariance Network

  4. ITOC ITOC FAPAR: [(ITOC+IS)–(ITOC+IS)] / ITOC canopy IS IS soil Key Remotely Sensed Variables

  5. Atmospheric CO2 Measurements CCDAS inverse modelling period ... and more stations in CCDAS

  6. satellite FAPAR CCDAS Step 1 full BETHY Carbon Cycle Data Assimilation System (CCDAS) atm. CO2 eddy flux CO2 & H2O soil water LAI veg. distr. CCDAS Step 2 BETHY+TM2 energy balance/ photosynt. params & error cov. Monte Carlo Param. Inversion full BETHY CO2 and water fluxes + uncert. 2°x2° collaborators: T. Kaminski, R. Giering (FastOpt); P. Rayner (CSIRO) B. Pinty, N. Gobron, M. Verstraete (JRC, Ispra)

  7. Overview • Carbon Cycle Observations • Assimilation of Eddy Covariance Data • Assimilation of Satellite "Greenness" • Assimilation of Atmospheric CO2 Data • Outlook

  8. satellite FAPAR CCDAS Step 1 full BETHY Carbon Cycle Data Assimilation System (CCDAS) atm. CO2 eddy flux CO2 & H2O soil water LAI veg. distr. CCDAS Step 2 BETHY+TM2 energy balance/ photosynt. params & error cov. Monte Carlo Param. Inversion full BETHY CO2 and water fluxes + uncert. 2°x2°

  9. measurements model diagnostics error covariance matrix of measurements assumed model parameters a priori error covariance matrix of parameters a priori parameter values met. data eddy flux CO2 & H2O (7 selected days) BETHY J parameters The Cost Function Measure of the mismatch (cost function): aim: sample exp{–J(m)} =probability density function

  10. Convergence of parameters (BETHY model) Convergence of Cost Function, diagnostic vs. parameter (=Bayes) space Fig. 1, Knorr & Kattge, GCB 2005

  11. Fig. 4, Knorr & Kattge, GCB 2005

  12. C4 grassland [FIFE] conifer forest [Loobos] photosynth. respiration 1–sopt/sprior energy balance Fig. 3, Knorr & Kattge 2005 stomata

  13. Fig. 5, Knorr & Kattge, GCB 2005

  14. Overview • Carbon Cycle Observations • Assimilation of Eddy Covariance Data • Assimilation of Satellite "Greenness" • Assimilation of Atmospheric CO2 Data • Outlook

  15. Carbon Cycle Data Assimilation System (CCDAS) atm. CO2 satellite FAPAR eddy flux CO2 & H2O soil water LAI veg. distr. CCDAS Step 2 BETHY+TM2 energy balance/ photosynt. params & error cov.. Monte Carlo Param. Inversion full BETHY CCDAS Step 1 full BETHY CO2 and water fluxes + uncert. 2°x2° collaborators: B. Pinty, N. Gobron, M. Verstraete (JRC, Ispra)

  16. measurements model diagnostics error covariance matrix of measurements assumed model parameters a priori error covariance matrix of parameters a priori parameter values The Cost Function Measure of the mismatch (cost function): aim: minimize J(m) at each grid cell: m: relative contributions of vegetation types met. data BETHY J FAPAR parameters

  17. Step 1: FAPAR Assimilation prior optimized cover fraction of PFT: evergreen coniferous tree

  18. optimized deforestation? Step 1: FAPAR Assimilation relative cover fraction: tropical evergreen trees prior

  19. Overview • Carbon Cycle Observations • Assimilation of Eddy Covariance Data • Assimilation of Satellite "Greenness" • Assimilation of Atmospheric CO2 Data • Outlook

  20. satellite FAPAR CCDAS Step 1 full BETHY Carbon Cycle Data Assimilation System (CCDAS) atm. CO2 eddy flux CO2 & H2O soil water LAI veg. distr. CCDAS Step 2 reduced BETHY +TM2 params & error cov. Monte Carlo Param. Inversion full BETHY Background CO2 fluxes* CO2 and water fluxes + uncert. 2°x2° Uses adjoint and Hessian generated by TAF of T. Kaminski, R. Giering (FastOpt); *ocean: Takahashi et al. (1999), LeQuere et al. (2000); emissions: Marland et al. (2001), Andres et al. (1996); land use: Houghton et al. (1990)

  21. measurements model diagnostics error covariance matrix of measurements assumed model parameters a priori error covariance matrix of parameters a priori parameter values The Cost Function Measure of the mismatch (cost function): aim: minimize J(m): m: 58 BETHY parameters met. data BETHY+TM2 J atm. CO2 parameters

  22. Prior/Optimized Fluxes Table 4, Rayner et al., GBC 2005

  23. Second Derivative (Hessian) of J(m): ∂2J(m)/∂m2 yields curvature of J, provides estimated uncertainty in mopt J(x) Space of m (model parameters) Error Covariances in Parameters Figure taken from Tarantola '87

  24. relative error reduction 1–sopt/sprior CCDAS photosynth. plant resp. soil resp. from Table 1, Rayner et al., GBC 2005

  25. Error Covariances in Diagnostics Error covariance of diagnostics, y, after optimisation (e.g. CO2 fluxes): adjoint or tangent linear model error covariance of parameters

  26. gC m-2 yr -1 mean NEP 1980–2000, CCDAS uncertainty in mean NEP 1980–2000, CCDAS gC m-2 yr -1 Fig. 9/10, Rayner et al., GBC 2005

  27. Outlook • More data: inventories, regional inversions and budgets, satellite CO2 columns, isotopes, O2/N2 • More components: ocean (“free” optimization indicates no big changes) • More processes: fire (under construction) • Prognostic step...

More Related