640 likes | 838 Views
Zoltan Toth Environmental Modeling Center NOAA/NWS/NCEP Ackn.: Yuejian Zhu, Olivier Talagrand (1) , Steve Lord, Geoff DiMego, John Huddleston (1) : Ecole Normale Superior and LMD, Paris, France http://wwwt.emc.ncep.noaa.gov/gmb/ens/index.html.
E N D
Zoltan Toth Environmental Modeling Center NOAA/NWS/NCEP Ackn.: Yuejian Zhu, Olivier Talagrand (1) , Steve Lord, Geoff DiMego, John Huddleston (1) : Ecole Normale Superior and LMD, Paris, France http://wwwt.emc.ncep.noaa.gov/gmb/ens/index.html VERIFICATION OF OPERATIONALPROBABILISTIC & ENSEMBLE FORECASTS
OUTLINE / SUMMARY • FORECAST OPERATIONS • 24/7 PROVISION OF FORECAST INFORMATION • CONTINUAL IMPROVEMENTS • ATTRIBUTES OF FORECAST SYSTEMS • RELIABILITY Look like nature • RESOLUTION Ability to see into future • GENERATION OF PROBABILISTIC FORECASTS • NUMERICAL FORECASTING Single or ensemble • IMPROVING RELIABILITY Statistical corrections • VERIFICATION OF PROBABILSTIC & ENSEMBLE FORECASTS • UNIFIED PROBABILISTIC MEASURES Dimensionless • ENSEMBLE MEASURES Evaluate finite sample • ROLE OF DTC • SHARE VERIFICATION ALGORITHMS • Make operationally used algorithms available to research community • Facilitate transition of new measures for use by operational community
FORECAST OPERATIONS Definition Services related to information on future environmental conditions Production Delivery Main objectives Short-term Maintain uninterrupted service - 24/7 Long-term Improve information Quality – Production Utility - Delivery
FORECAST EVALUATION Statistical approach Evaluates set of forecasts and not a single forecast Interest in comparing forecast systems Forecasts generated by same procedure Sample size affects how fine stratification is possible Level of details is limited Size of sample limited by available obs. record (even hind-casts) Types Forecast statistics Depends only on forecast properties Verification Comparison of forecast and proxy for “truth” in statistical sense Depends on both natural and forecast systems Nature represented by “proxy” Observations (including observational error) Numerical analysis (including analysis error)
FORECAST VERIFICATION Types Measures of quality Environmental science issues Main focus here Measures of utility Multidisciplinary Social & economic issues, beyond environmental sciences Socio-economic value of forecasts is ultimate measure Approximate measures can be constructed Quality vs. utility Improved quality Generally permits enhanced utility (assumption) How to improve utility if quality is fixed? Providers make all information that can be made available known E.g., offer probabilistic or other information on forecast uncertainty Engage in education, training Users identify forecast aspects important to them Can providers selectively improve certain aspects of forecasts? E.g, improve precipitation forecasts without improving circulation forecasts?
EVALUATING QUALITY OF FORECAST SYSTEMS Goal Infer comparative information about forecast systems Value added by New methods Subsequent steps in end-to-end forecast process (eg., manual changes) Critical for monitoring and improving operational forecast systems Attributes of forecast systems Traditionally, forecast attributes defined separately for each fcst format General definition needed Need to compare forecasts From any system & Of any type / format Single, ensemble, categorical, probabilistic, etc Supports systematic evaluation of End-to-end (provider-user) forecast process Statistical post-processing as integral part of system
FORECAST SYSTEM ATTRIBUTES Abstract concept (like length) Reliability and Resolution Both can be measured through different statistics Statistical property Interpreted for large set of forecasts Describe behavior of forecast system, not a single forecast For their definition, assume that Forecasts Can be of any format Single value, ensemble, categorical, probabilistic, etc Take a finite number of different “classes” Fa Observations Can also be grouped into finite number of “classes” like Oa
STATISTICAL RELIABILITY – TEMPORAL AGGREGATESTATISTICAL CONSISTENCY OF FORECASTS WITH OBSERVATIONS BACKGROUND: Consider particular forecast class – Fa Consider frequency distribution of observations that follow forecasts Fa - fdoa DEFINITION: If forecast Fa has the exact same form as fdoa, for all forecast classes, the forecast system is statistically consistent with observations => The forecast system is perfectly reliable MEASURES OF RELIABILITY: Based on different ways of comparing Fa and fdoa • EXAMPLES: • CONTROL FCST ENSEMBLE
STATISTICAL RESOLUTION – TEMPORAL EVOLUTIONABILITY TO DISTINGUISH, AHEAD OF TIME, AMONG DIFFERENT OUTCOMES BACKGROUND: Assume observed events are classified into finite number of classes, like Oa DEFINITION: If all observed classes (Oa, Ob,…) are preceded by Distinctly different forecasts (Fa, Fb,…) The forecast system “resolves” the problem => The forecast system has perfect resolution MEASURES OF RESOLUTION: Based on degree of separation of fdo’s that follow various forecast classes Measured by difference between fdo’s & climate distribution Measures differ by how differences between distributions are quantified FORECASTS EXAMPLES OBSERVATIONS
CHARACTERISTICS OF RELIABILITY & RESOLUTION Reliability Related to form of forecast, not forecast content Fidelity of forecast Reproduce nature when resolution is perfect, forecast looks like nature Not related to time sequence of forecast/observed systems How to improve? Make model more realistic Also expected to improve resolution Statistical bias correction: Can be statistically imposed at one time level If both natural & forecast systems are stationary in time & If there is a large enough set of observed-forecast pairs Link with verification: Replace forecast with corresponding fdo Resolution Related to inherent predictive value of forecast system Not related to form of forecasts Statistical consistency at one time level (reliability) is irrelevant How to improve? Enhanced knowledge about time sequence of events More realistic numerical model should help May also improve reliability
CHARACTERISTICS OF FORECAST SYSTEM ATTRIBUTES RELIABILITY AND RESOLUTION ARE General forecast attributes Valid for any forecast format (single, categorical, probabilistic, etc) Independent attributes For example Climate pdf forecast is perfectly reliable, yet has no resolution Reversed rain / no-rain forecast can have perfect resolution and no reliability To separate them, they must be measured according to general definition If measured according to traditional definition Reliability & resolution can be mixed Function of forecast quality There is no other relevant forecast attribute Perfect reliability and perfect resolution = perfect forecast system = “Deterministic” forecast system that is always correct Both needed for utility of forecast systems Need both reliability and resolution Especially if no observed/forecast pairs available (eg, extreme forecasts, etc)
FORMAT OF FORECASTS – PROBABILSITIC FORMAT Do we have a choice? When forecasts are imperfect Only probabilistic format can be reliable/consistent with nature Abstract concept Related to forecast system attributes Space of probability – dimensionless pdf or similar format For environmental variables (not those variables themselves) Definition Define event Function of concrete variables, features, etc E.g., “temperature above freezing”; “thunderstorm” Determine probability of event occurring in future Based on knowledge of initial state and evolution of system
GENERATION OF PROBABILISTIC FORECASTS How to determine forecast probability? Fully statistical methods – losing relevance Numerical modeling Liouville Equations provide pdf’s Not practical (computationally intractable) Finite sample of pdf Single or multiple (ensemble) integrations Increasingly finer resolution estimate in probabilities How to make (probabilistic) forecasts reliable? Construct pdf Assess reliability Construct frequency distribution of observations following forecast classes Replace form of forecast with associated frequency distribution of observations Production and verification of forecasts connected in operations
ENSEMBLE FORECASTS Definition Finite sample to estimate full probability distribution Full solution (Liouville Eqs.) computationally intractable Interpretation (assignment of probabilities) Narrow Step-wise increase in cumulative forecast probability distribution Performance dependent on size of ensemble Enhanced Inter- & extrapolation (dressing) Performance improvement depends on quality of inter- & extrapolation Based on assumptions Linear interpolation (each member equally likely) Based on verification statistics Kernel or other methods (Inclusion of some statist. bias-correction)
OPERATIONAL PROB/ENSEMBLE FORECAST VERIFICATION Requirements Use same general dimensionless probabilistic measures for verifying Any event Against either Observations or Numerical analysis Measures used at NCEP Probabilistic forecast measures – ensemble interpreted probabilistically Reliability Component of BSS, RPSS, CRPSS Attributes & Talagrand diagrams Resolution Component of BSS, RPSS, CRPSS ROC, attributes diagram, potential economic value Special ensemble verification procedures Designed to assess performance of finite set of forecasts Most likely member statistics, PECA Missing components include General event definition - Spatial/temporal/cross variable considerations Routine testing of statistical significance Other “spatial” and/or “diagnostic” measures?
VERIFICATION SYSTEM DEVELOPMENT AT NCEP FVS, VSDB – Geoff DiMego, Keith Brill Implement in 2007 for traditional forecasts Comprehensive set of basic functionalities with some limitations FVIS, VISDB – John Huddleston Implement in 2008 Expanded capabilities Probabilistic/ensemble measures added Flexibility added Interface with newly designed GSD verification system Basis for NOAA-wide unified verification system NCEP, GSD collaboration – Jennifer Mahoney
ROLE OF DTC IN VERIFICATION “ENTERPRISE” Share verification algorithms across forecasting enterprise Researchers (at DTC) must be able to use Exact same measures as those used at operations Operations must be able to easily incorporate New measures used by researchers NOAA/NWS is transitioning toward probabilistic forecasting NRC report on “Completing the forecast” DTC needs to coordinate with Evolving NOAA/NWS operations in probabilistic forecast Generation Verification For the benefit of research, operations, and R2O Interoperable subroutines Leveraging Web-based user interfaces Database management procedures
REFERENCES http://wwwt.emc.ncep.noaa.gov/gmb/ens/ens_info.html Toth, Z., O. Talagrand, and Y. Zhu, 2005: The Attributes of Forecast Systems: A Framework for the Evaluation and Calibration of Weather Forecasts. In: Predictability Seminars, 9-13 September 2002, Ed.: T. Palmer, ECMWF, pp. 584-595. Toth, Z., O. Talagrand, G. Candille, and Y. Zhu, 2003: Probability and ensemble forecasts. In: Environmental Forecast Verification: A practitioner's guide in atmospheric science. Ed.: I. T. Jolliffe and D. B. Stephenson. Wiley, pp. 137-164.
VERIFICATION STATISTICS – SINGLE FORECAST Pointwise (can be aggregated in space / time) RMS error & its decomposition into Time mean error Random error Phase vs. amplitude decomposition Multivariate (cannot be aggregated) PAC correlation Temporal correlation
VERIFICATION STATISTICS – ENSEMBLE Point-wise Ensemble mean statistics RMS error & decomposition Spread around mean Best member frequency statistics Outlier statistics (Talagrand) Multivariate (cannot be aggregated) PAC correlation Temporal correlation Perturbation vs. Error Correlation Analysis (PECA) Independent degrees of freedom (DOF) Explained error variance
VERIFICATION STATISTICS – PROBABILISTIC Point-wise (computed point by point, then aggregated in space and time) Brier Skill Score (incl. Reliability & Resolution components) Ranked Probability Skill Score (incl. Reliability & Resolution components) Continuous Ranked Probability Skill Score (incl. Reliability & Resolution components) Relative Operating Characteristics (ROC) Potential Economic Value Information content Feature-based verification done using same scores After event definition Storm strike probability
REQUIREMENTS – CFS NINO 3.4 anomaly correlation (CFS) Bias-corrected US 2 meter temperature (AC, RMS) Bias-corrected US precipitation (AC, RMS) Weekly, monthly, seasonal, annual, inter-annual stats REQUIREMENTS – GDAS All statistics segregated by instrument type Observation counts and quality mark counts Guess fits to observations by instrument type Bias correction statistics Contributions to penalty
REQUIREMENTS – GFS Feature tracking Hurricane tracks Raw track errors and compared to CLIPER Frequency of being the best By storm and basin Hurricane intensity Extra-tropical storm statistics Verification against observations Support both interpolation from pressure levels or from native model levels Horizontal bias and error maps Vertical bias and error by region Time series of error fits Fits by month and year Verification against analyses All fields in master pressure GRIB file can be compared All kinds of fields, including tracers All kinds of levels, including iso-IPV Single field diagnostics (without a verifying field) Mean, mode, median, range, variance Masking capability Only over snow covered, etc. Region selection Anomaly correlation RMS error FHO statistics by threshold Count of difference and largest difference Superanalysis verification
REQUIREMENTS – THORPEX / NAEFS Measures CRPS for continuous variables? BSS for extreme temperature, winds, severe weather? Forecasts 500 hPa height (legacy measure, indicator of general level of predictability, to assess long term evolution of skill) 2m temperature – heating/cooling degree? 10m winds Tropical storm strike probability Severe weather related measure (that can be verified against both analysis or observations?) PQPF Probabilistic natural river flow
REQUIREMENTS – THORPEX / NAEFS Measures CRPS for continuous variables? BSS for extreme temperature, winds, severe weather? Forecasts 500 hPa height (legacy measure, indicator of general level of predictability, to assess long term evolution of skill) 2m temperature – heating/cooling degree? 10m winds Tropical storm strike probability Severe weather related measure (that can be verified against both analysis or observations?) PQPF Probabilistic natural river flow
EXAMPLE – FLOW OF ENSEMBLE VERIFICATION Define desired verification: choose verification statistics (continuous ranked probability score against climatology), variable (2m temp), event (above 0C), for a particular week, one particular lead time and area, verified against set of observations Set up script to be run based on info above; statistics to be computed in loop going over each day For each day in loop, read in verification data; read in forecast grid; read in climate info; interpolate forecast data to observations (time/space interpolation Compute intermediate statistics for CRPSS for each day by comparing observations to interpolated forecast for both forecast system and climate forecast Aggregate intermediate statistics either Over selected domain (possibly with latitudinal weighting) for each day (for time plot of scores) OR In time (averaging with equal or decaying weights) for each verification point (for spatial display of scores) Store intermediate and final statistics in database Display results either in tabular or graphical format
FORECAST METHODS Empirically based Based on record of observations => Possibly very good reliability Will fail in “new” (not yet observed) situations (eg., climate trend, etc) Resolution (forecast skill) depends on length of observations Useful for now-casting, climate applications Not practical for typical weather forecasting Theoretically based Based on general scientific principles Incomplete/approximate knowledge in NWP models => Prone to statistical inconsistency Run-of-the-mill cases can be statistically calibrated to insure reliability For forecasting rare/extreme events, statistical consistency of model must be improved Predictability limited by Gaps in knowledge about system Errors in initial state of system
SCIENTIFIC BACKGROUND: WEATHER FORECASTS ARE UNCERTAIN Buizza 2002
USER REQUIREMENTS:PROBABILISTIC FORECAST INFORMATION IS CRITICAL
FORECASTING IN A CHAOTIC ENVIRONMENT – PROBABILISTIC FORECASTING BASED A ON SINGLE FORECAST – One integration with an NWP model, combined with past verification statistics DETERMINISTIC APPROACH - PROBABILISTIC FORMAT • Does not contain all forecast information • Not best estimate for future evolution of system • UNCERTAINTY CAPTURED IN TIME AVERAGE SENSE - • NO ESTIMATE OF CASE DEPENDENT VARIATIONS IN FCST UNCERTAINTY
FORECASTING IN A CHAOTIC ENVIRONMENT - 2 • DETERMINISTIC APPROACH - PROBABILISTIC FORMAT • PROBABILISTIC FORECASTING - • Based on Liuville Equations • Continuity equation for probabilities, given dynamical eqs. of motion • Initialize with probability distribution function (pdf) at analysis time • Dynamical forecast of pdf based on conservation of probability values • Prohibitively expensive - • Very high dimensional problem (state space x probability space) • Separate integration for each lead time • Closure problems when simplified solution sought
FORECASTING IN A CHAOTIC ENVIRONMENT - 3DETERMINISTIC APPROACH - PROBABILISTIC FORMAT MONTE CARLO APPROACH –ENSEMBLE FORECASTING IDEA: Sample sources of forecast error Generate initial ensemble perturbations Represent model related uncertainty PRACTICE: Run multiple NWP model integrations Advantage of perfect parallelization Use lower spatial resolution if short on resources USAGE:Construct forecast pdf based on finite sample Ready to be used in real world applications Verification of forecasts Statistical post-processing (remove bias in 1st, 2nd, higher moments) CAPTURES FLOW DEPENDENT VARIATIONS IN FORECAST UNCERTAINTY
NCEP GLOBAL ENSEMBLE FORECAST SYSTEM MARCH 2004 CONFIGURATION
MOTIVATION FOR ENSEMBLE FORECASTING FORECASTS ARE NOT PERFECT - IMPLICATIONS FOR: USERS: Need to know how often / by how much forecasts fail Economically optimal behavior depends on Forecast error characteristics User specific application Cost of weather related adaptive action Expected loss if no action taken EXAMPLE: Protect or not your crop against possible frost Cost = 10k, Potential Loss = 100k => Will protect if P(frost) > Cost/Loss=0.1 NEED FOR PROBABILISTIC FORECAST INFORMATION DEVELOPERS: Need to improve performance - Reduce error in estimate of first moment Traditional NWP activities (I.e., model, data assimilation development) Need to account for uncertainty - Estimate higher moments New aspect – How to do this? Forecast is incomplete without information on forecast uncertainty NEED TO USE PROBABILISTIC FORECAST FORMAT
HOW TO DEAL WITH FORECAST UNCERTAINTY? How forecast uncertainty can be communicated? Do users need to know about uncertainty in forecasts? Probability • No matter what / how sophisticated forecast methods we use • Forecast skill limited • Skill varies from case to case • Forecast uncertainty must be assessed by meteorologists THE PROBABILISTIC APPROACH
SOCIO-ECONOMIC BENEFITS OFSEAMLESS WEATHER/CLIMATE FORECAST SUITE Forecast Uncertainty Outlook Guidance Threat Assessments Type of Guidance Forecasts Watches Warnings & Alert Coordination Lead Time Commerce Energy Ecosystem Health Hydropower Agriculture Boundary Condition Sensitivity Reservoir control Recreation Transportation Fire weather Initial Condition Sensitivity Flood mitigation Navigation Protection of Life/Property Minutes Hours Days Weeks Months Seasons Years
144 hr forecast Poorly predictable large scale wave Eastern Pacific – Western US Highly predictable small scale wave Eastern US Verification
FORECAST PERFORMANCE MEASURES COMMON CHARACTERISTIC: Function of both forecast and observed values MEASURES OF RELIABILITY: DESCRIPTION: Statistically compares any sample of forecasts with sample of corresponding observations GOAL: To assess similarity of samples (e.g., whether 1st and 2nd moments match) EXAMPLES: Reliability component of Brier Score Ranked Probability Score Analysis Rank Histogram Spread vs. Ens. Mean error Etc. MEASURES OF RESOLUTION: DESCRIPTION: Compares the distribution of observations that follows different classes of forecasts with the climate distribution (as reference) GOAL: To assess how well the observations are separated when grouped by different classes of preceding fcsts EXAMPLES: Resolution component of Brier Score Ranked Probability Score Information content Relative Operational Characteristics Relative Economic Value Etc. COMBINED (REL+RES) MEASURES: Brier, Ranked Probab. Scores, rmse, PAC, etc
EXAMPLE – PROBABILISTIC FORECASTS RELIABILITY: Forecast probabilities for given event match observed frequencies of that event (with given prob. fcst) RESOLUTION: Many forecasts fall into classes corresponding to high or low observed frequency of given event (Occurrence and non-occurrence of event is well resolved by fcst system)
PROBABILISTIC FORECAST PERFORMANCE MEASURES TO ASSESS TWO MAIN ATTRIBUTES OF PROBABILISTIC FORECASTS: RELIABILITY AND RESOLUTION Univariate measures: Statistics accumulated point by point in space Multivariate measures: Spatial covariance is considered EXAMPLE: BRIER SKILL SCORE (BSS) COMBINED MEASURE OF RELIABILITYANDRESOLUTION
BRIER SKILL SCORE (BSS) COMBINED MEASURE OF RELIABILITY AND RESOLUTION METHOD: Compares pdf against analysis • Resolution (random error) • Reliability (systematic error) EVALUATION BSS Higher better Resolution Higher better Reliability Lower better RESULTS Resolution dominates initially Reliability becomes important later • ECMWF best throughout • Good analysis/model? • NCEP good days 1-2 • Good initial perturbations? • No model perturb. hurts later? • CANADIAN good days 8-10 • Model diversity helps? May-June-July 2002 average Brier skill score for the EC-EPS (grey lines with full circles), the MSC-EPS (black lines with open circles) and the NCEP-EPS (black lines with crosses). Bottom: resolution (dotted) and reliability(solid) contributions to the Brier skill score. Values refer to the 500 hPa geopotential height over the northern hemisphere latitudinal band 20º-80ºN, and have been computed considering 10 equally-climatologically-likely intervals (from Buizza, Houtekamer, Toth et al, 2004)
BRIER SKILL SCORE COMBINED MEASURE OF RELIABILITY AND RESOLUTION
RANKED PROBABILITY SCORE COMBINED MEASURE OF RELIABILITY AND RESOLUTION