320 likes | 822 Views
Image Compression. อ.รัชดาพร คณาวงษ์ วิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากรวิทยาเขตพระราชวังสนามจันทร์. Image Compression. Reducing the size of image data files While retaining necessary information. Original Image. Compressed Image file. extracted Image file. compress.
E N D
Image Compression อ.รัชดาพร คณาวงษ์ วิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากรวิทยาเขตพระราชวังสนามจันทร์
Image Compression • Reducing the size of image data files • While retaining necessary information Original Image Compressed Image file extracted Image file compress decompress
Terminology • refer relation between original image and the compressed file • Compression Ratio • Bits per Pixel A larger number implies a better compression A smaller number implies a better compression
Compression Ratio (1) Ex Image 256X256 pixels, 256 level grayscale can be compressed file size 6554 byte. Original Image Size = 256X256(pixels) X 1(byte/pixel) = 65536 bytes
(2) Bits per Pixel Ex Image 256X256 pixels, 256 level grayscale can be compressed file size 6554 byte. Original Image Size = 256X256(pixels) X 1(byte/pixel) = 65536 bytes Compressed file = 6554(bytes)X8(bits/pixel) = 52432 bits
Why we want to compress? To transmit an RGB 512X512, 24 bit image via modem 28.2 kbaud(kilobits/second)
Key of compression • Reducing Data but Retaining Information DATA are used to convey information. Various amounts of data can be used to represent the same amount of information. It’s “Data redundancy” Relative data redundancy
Entropy • Average information in an image. • Average number of bits per pixel
Redundancy • Coding Redundancy • Interpixel Redundancy • Psychovisual Redundancy
Coding Redundancy • Occurred when data used to represent image are not utilized in an optimal manner
Coding Redundancy(cont) • An 8 gray-level image distribution shown in Table
Coding Redundancy(cont) • Original Image 8 possible gray level = 23
Interpixel Redundancy • Adjacent pixel values tend to be highly correlated
Psychovisual Redundancy • Some information is more important to the human visual system than other types of information
Compressed File Preprocessing Encoding Input Compressed File Decoding Postprocessing Output Compression System Model • Compression • Decompression
Types of Compression There are 2 types of Compression • Loseless Compression • Lossy Compression
Loseless Compression • No data are lost • Can recreated exactly original image • Often the achievable compression is mush less
Huffman Coding • Using Histogram probability • 5 Steps • Find the histogram probabilities • Order the input probabilities(smalllarge) • Addition the 2 smallest • Repeat step 2&3, until 2 probability are left • Backward along the tree assign 0 and 1
40 30 20 10 0 1 2 3 Huffman Coding(cont) • Step 1 Histogram Probability p0 = 20/100 = 0.2 p1 = 30/100 = 0.3 p2 = 10/100 = 0.1 p3 = 40/100 = 0.4 • Step 2 Order p3 0.4 p1 0.3 p0 0.2 p2 0.1
Huffman Coding(cont) • Step 3 Add 2 smallest
Huffman Coding(cont) • The original Image :average 2 bits/pixel • The Huffman Code:average
Run-Length Coding • Counting the number of adjacent pixels with the same gray-level value • Used primarily for binary image • Mostly use horizontal RLC
Run-Length Coding(cont) Binary Image 8X8 horizontal
1 0 1 Run-Length Coding(cont) • Extending basic RLC to gray-level image by using bit-plane coding • It will better if change the natural code into gray code 00 01 10 11 00 01 11 10 Natural Gray Code
Lempel-Ziv-Weich Coding(LZW) • Assign fixed-length code words to variable • GIF,TIFF,PDF
Lossy Compression • Allow a loss in the actual image data • Can not recreated exactly original image • Commonly the achievable compression is mush more • JPEG
Fidelity Criteria • Objective fidelity criteria • RMS Error • RMS Signal-To-Noise Ratio • Subjective fidelity criteria