780 likes | 1.17k Views
Electrochemistry. 2. Electrochemistry. All of Chemical reactins are related to ELECTRONS Redox reactions. 3. Power consumption. Chemical Reactions. Electric Power. Power generation. Electric power conversion in electrochemistry. Electrolysis. Galvanic cells. Electrochemistry.
E N D
Electrochemistry 2 http:\\asadipour.kmu.ac.ir 76 slides
Electrochemistry • All of Chemical reactins are related to • ELECTRONS • Redox reactions 3 http:\\asadipour.kmu.ac.ir 76 slides
Power consumption Chemical Reactions Electric Power Power generation Electric power conversion in electrochemistry Electrolysis Galvanic cells http:\\asadipour.kmu.ac.ir 76 slides
Electrochemistry • Conduction • 1)Metalic • 2)Electrolytic • TempratureMotion of ions Resistance -------------------------------- ----- ----- 5 http:\\asadipour.kmu.ac.ir 76 slides
- + battery power source Electrolytic conduction e- Ions Chemical change e- Aqueous NaCl Conduction ≈ Ions mobility Interionic attractions................................ Ions Solvation…………………………………………. Solvent viscosity …………………………………….. Ion-Ion Attr. Ion- Solvent Attr. Solvent–Solvent Attr. Na+ Cl- Temprature Attractions& Kinetic energy Conduction (-) (+) H2O http:\\asadipour.kmu.ac.ir 76 slides
Electrolytic Cell Construction vessel - + battery power source e- e- conductive medium inert electrodes http:\\asadipour.kmu.ac.ir 76 slides
Molten NaCl Observe the reactions at the electrodes - + battery Cl2 (g) escapes Na (l) NaCl (l) Na+ Cl- Na+ Cl- (-) (+) electrode half-cell electrode half-cell Cl- Na+ Na+ + e- Na 2Cl- Cl2 + 2e- http:\\asadipour.kmu.ac.ir 76 slides
Molten NaCl At the microscopic level - + battery e- NaCl (l) cations migrate toward (-) electrode anions migrate toward (+) electrode Na+ Cl- Na+ e- Cl- (-) (+) anode cathode Cl- Na+ 2Cl- Cl2 + 2e- Na+ + e- Na http:\\asadipour.kmu.ac.ir 76 slides
Molten NaCl Electrolytic Cell cathode half-cell (-) REDUCTION Na+ + e- Na anode half-cell (+) OXIDATION 2Cl- Cl2 + 2e- overall cell reaction 2Na+ + 2Cl- 2Na + Cl2 X 2 Non-spontaneous reaction! http:\\asadipour.kmu.ac.ir 76 slides
What chemical species would be present in a vessel of aqueous sodium chloride, NaCl (aq)? Na+ Cl- H2O Will the half-cell reactions be the same or different? http:\\asadipour.kmu.ac.ir 76 slides
Water Complications in Electrolysis • In an electrolysis, the most easily oxidized and most easily reduced reaction occurs. • When water is present in an electrolysis reaction, then water (H2O) can be oxidized or reduced according to the reaction shown. Electrode Ions ... Anode Rxn Cathode Rxn E° Pt (inert) H2O H2O(l)+ 2e- gH2(g)+ 2OH-(aq) -0.83 V H2O 2 H2O(l)g 4e- + 4H+(g) + O2(g) -1.23 V Net Rxn Occurring: 2 H2O g 2 H2(g)+ O2 (g) E°= - 2.06 V
anode 2Cl- Cl2 + 2e- - + Aqueous NaCl battery power source e- e- 2H2O + 2e- H2 + 2OH- NaCl (aq) What could be reduced at the cathode? Na+ Cl- (-) (+) H2O cathode different half-cell http:\\asadipour.kmu.ac.ir 76 slides
Aqueous NaCl Electrolysis possible cathode half-cells (-) REDUCTION Na+ + e- Na 2H2O + 2e- H2 + 2OH- possible anode half-cells (+) OXIDATION2Cl- Cl2 + 2e- 2H2O O2 + 4H+ + 4e- overall cell reaction 2Cl- + 2H2O H2 + Cl2 + 2OH- http:\\asadipour.kmu.ac.ir 76 slides
Aqueous CuCl2 Electrolysis possible cathode half-cells (-) REDUCTION Cu2+ + 2e- Cu 2H2O + 2e- H2 + 2OH- possible anode half-cells (+) OXIDATION2Cl- Cl2 + 2e- 2H2O O2 + 4H+ + 4e- overall cell reaction Cu2+ + 2Cl- Cu(s) + Cl2(g) http:\\asadipour.kmu.ac.ir 76 slides
Aqueous Na2SO4 Electrolysis possible cathode half-cells (-) REDUCTION Na+ + e- Na [2H2O + 2e- H2 + 2OH- ] possible anode half-cells (+) OXIDATION SO42- S4O82_ + 2e- 2H2O O2 + 4H+ + 4e- overall cell reaction 6H2O 2H2 + O2 +4H+ + 4OH- 2× http:\\asadipour.kmu.ac.ir 76 slides
time in seconds coulomb current in amperes (amp) Faraday’s Law Quantity of electricity = coulomb (Q) The mass deposited or eroded from an electrode depends on the quantity of electricity. Q = It http:\\asadipour.kmu.ac.ir 76 slides
1 coulomb = 1 amp-sec = 0.001118 g Ag e- Experimentally: 1 amp = 0.001118 g Ag/sec For every electron, an atom of silver is plated on the electrode. Ag+ + e- Ag Electrical current is expressed in terms of the ampere, which is defined as that strength of current which, when passed thru a solution of AgNO3 (aq) under standard conditions, will deposit silver at the rate of 0.001118 g Ag/sec Ag+ Ag http:\\asadipour.kmu.ac.ir 76 slides
107.87 g Ag/mole e- 0.001118 g Ag/coul 1 Faraday (F ) Ag+ + e- Ag 1.00 mole e- = 1.00 mole Ag = 107.87 g Ag =96,485 coul/mole e- mole e- = Q/F • 1C=1AS /// 1J=1CV http:\\asadipour.kmu.ac.ir 76 slides
battery • A series of solutions have 50,000 coulombs passed thru them, if the solutions were Au+3, Zn+2, and Ag+, and Au, Zn, and Ag were plated out respectively, calculate the amount of metal deposited at each anode. e- - + - + - + - + e- e- e- 1.0 M Au+3 1.0 M Zn+2 1.0 M Ag+ Au+3 + 3e- Au Zn+2 + 2e- Zn Ag+ + e- Ag http:\\asadipour.kmu.ac.ir 76 slides
Examples using Faraday’s Law • 1)How many grams of Cu will be deposited in 1L of • A)0.1 M CuSO4 • B) 1 M CuSO4 After 3.00 hours electrolysis by a current of 4.00 amps?(Cu=64) Cu+2 + 2e- Cu • 2)The charge on a single electron is 1.6021 x 10-19 coulomb. Calculate Avogadro’s number from the fact that 1 F= 96,487 coulombs/mole e-. http:\\asadipour.kmu.ac.ir 76 slides
21-8 Industrial Electrolysis Processes http:\\asadipour.kmu.ac.ir 76 slides Slide 25 of 52
Volta’s battery (1800) Alessandro Volta 1745 - 1827 Paper moisturized with NaCl solution Cu Zn http:\\asadipour.kmu.ac.ir 76 slides
Galvanic Cell Construction Salt bridge – KCl in agar Provides conduction between half-cells Observe the electrodes to see what is occurring. Cu Zn 1.0 M CuSO4 1.0 M ZnSO4 http:\\asadipour.kmu.ac.ir 76 slides
What about half-cell reactions? What about the sign of the electrodes? Anod - Cathod + Why? Compare with Electrolytic cells Cu+2+ 2e- Cu cathode half-cell Zn Zn+2 + 2e- anode half-cell Cu plates out or deposits on electrode Zn electrode erodes or dissolves What happened at each electrode? Cu Zn 1.0 M CuSO4 1.0 M ZnSO4 http:\\asadipour.kmu.ac.ir 76 slides
Electrolytic cells sign of the electrodes? - + battery e- NaCl (l) Na+ Cl- Na+ e- Cl- (-) (+) Anode + Cathode - Cl- Na+ 2Cl- Cl2 + 2e- Na+ + e- Na http:\\asadipour.kmu.ac.ir 76 slides
Olmsted Williams Electrodes are passive (not involved in the reaction) http:\\asadipour.kmu.ac.ir 76 slides
How do we calculate Standard Redox Potentials? We need a standard electrode to make measurements against! The Standard Hydrogen Electrode (SHE) H2 input 1.00 atm 25oC 1.00 M H+ 1.00 atm H2 Pt Half-cell 2H+ + 2e- H2 inert metal EoSHE = 0.0 volts 1.00 M H+ http:\\asadipour.kmu.ac.ir 76 slides
E0 is for the reaction as writtenE0red // E0ox • The more positive E0 the greater the tendency for the substance to be reduced • The half-cell reactions are reversible • The sign of E0changes when the reaction is reversed • Changing the stoichiometric coefficients of a half-cell reaction does not change the value of E0 Strongest oxidunt Strongest reductant http:\\asadipour.kmu.ac.ir 76 slides 19.3
-E=E0red MeasuringE0red Cu2+& Zn2+ anode cathode cathode anode Cu+2+ 2e- Cu E=E0red Zn Zn+2 + 2e- E=E0ox http:\\asadipour.kmu.ac.ir 76 slides Slide 34 of 52
Measuring E0of a cell - + ? 1.1 volts cathode half-cell Cu+2 + 2e- Cu anode half-cell Zn Zn+2 + 2e- Cu Zn 1.0 M CuSO4 1.0 M ZnSO4 http:\\asadipour.kmu.ac.ir 76 slides
Cd2+(aq) + 2e-Cd(s)E0 = -0.40 V Cr3+(aq) + 3e-Cr (s)E0 = -0.74 V Cr (s) Cr3+ (1 M) + 3e- E0cell = -0.40 +0.74=0.34 E0 = 0.34 V cell cell 2Cr (s) + 3Cd2+ (1 M) 3Cd (s) + 2Cr3+ (1 M) 2e- + Cd2+ (1 M) Cd (s) What is the standard emf of an electrochemical cell made of a Cd electrode in a 1.0 MCd(NO3)2 solution and a Cr electrode in a 1.0 M Cr(NO3)3 solution? x 3 Cathode (reduction): E0 = -0.40 V Cd is the stronger oxidizer Cd will oxidize Cr x 2 E0 = 0.74 V Anode (oxidation): E0cell = ? !! http:\\asadipour.kmu.ac.ir 76 slides 19.3
H2O with O2 Consider a drop of oxygenated water on an iron object Calculating the cell potential, Eocell, at standard conditions Fe Fe + O2 (g) + H2O Fe(OH)2(s) Fe+2 + 2e- Fe Eo = -0.44 v reverse 2x Which one is oxidunt? Fe Fe+2 + 2e- -Eo = +0.44 v O2 (g) + 2H2O + 4e- 4 OH-Eo = +0.40 v 2Fe + O2 (g) + 2H2O 2Fe(OH)2 (s) Eocell= +0.84 v This is spontaneoues corrosion or the oxidation of a metal. http:\\asadipour.kmu.ac.ir 76 slides
Free Energy and the Cell Potential Cu + 2Ag+ Cu+2 + 2Ag Cu Cu+2 + 2e-Eo= - 0.34 Ag+ + e- Ag Eo = + 0.80 v 2x Eocell= +0.46 v Cu + 2Ag+ Cu+2 + 2Ag DGo = -nFEocell 1F= 96,500 J/v where n is the number of electrons for the balanced reaction What is the free energy for the cell? DGo = -2×96500×0.46=-88780 J http:\\asadipour.kmu.ac.ir 76 slides
-Edepends on: -Related half reaction -Concentration -kinetic------------------------------------------------------2e- +2H+ H2 E0 = 0.000 Fe 3e- +Fe3+E0 = 0.036 ------------------------------------------ Fe +H+ Fe3+ +H2E0 = 0.036 Spontaneous redox reaction ?????!!!!!!!No=========================================================================================== - 0.337 V 0.036 V http:\\asadipour.kmu.ac.ir 76 slides
- 0.337 V 2Cu+ Cu2++Cu Auto redox=Disproportionation e- +Cu+ Cu E0 = 0.521 V Cu+ Cu2++e- E0 = -0.153 V ------------------------------------------- 2Cu+ Cu2++Cu E0 = 0.368V http:\\asadipour.kmu.ac.ir 76 slides
0.036 V Auto redox=Disproportionation?????? NO 2e- +Fe2+ Fe E0 = -0.440 V Fe2+ Fe3++e- E0 = -0.771 V 2 × ------------------------------------------- 3Fe2+ 2Fe3++Fe E0 = -1.221V http:\\asadipour.kmu.ac.ir 76 slides
1) e +Fe3+ Fe2+ E0= 0.771 2) 2e +Fe2+ Fe E0=-0.440 ------------------------------------------------------- 3e +Fe3+ Fe E0=+0.331 ? No e isn’t a function state 2e- +Fe2+ Fe E0 = -0.440 V Fe2+ Fe3++e- E0 = -0.771 V ------------------------------------------- 3Fe2+ 2Fe3++Fe E0 = -1.221V http:\\asadipour.kmu.ac.ir 76 slides -0.036 V
G0 =-nE0f G0 =-nE0f= -3E0f 1) e +Fe3+ Fe2+ E0= 0.771 G0=-1(+0.771) F=-0.771f 2) 2e +Fe2+ Fe E0=-0.440 G0=-2(-0.440) F=+0.880f ------------------------------------------------------ 3e +Fe3+ Fe G0=+0.109f =+0.109f 3E0=-0.109E0=-0.036 v http:\\asadipour.kmu.ac.ir 76 slides
Free Energy and Chemical Reactions • ΔG = ΔH - T·ΔS W = ΔH - q q ΔH ΔG TΔS W Ideal reverse cell Operating cell Spontaneous reaction http:\\asadipour.kmu.ac.ir 76 slides
Representation of a cell Ni(s) + Sn2+→Ni2+ + Sn(s)Redox reaction 2 e- + Sn2+→Sn(s) Ni(s)→2 e- + Ni2+ Ni(s) | Ni2+(XM) || Sn2+(YM)| Sn(s) A cell Cathode Anode http:\\asadipour.kmu.ac.ir 76 slides
Emf of a standard cell Ni(s) + Sn2+(1M)→ Ni2+(1M)+ Sn(s) Ni(s) | Ni2+(1M)|| Sn2+(1M) | Sn(s) Anode Cathode Ni(s)→2 e- + Ni2+ Eº =0.230 V 2 e- + Sn2+→Sn(s) Eº=-0.140V ------------------------------------ Eº =0.230 -0.140 =0.090V http:\\asadipour.kmu.ac.ir 76 slides
Effect of Concentration on Cell EMF • A voltaic cell is functional until E = 0 at which point equilibrium has been reached. • The point at which E = 0 is determined by the concentrations of the species involved in the redox reaction. • The Nernst Equation /-nf E = Eo – RTln Q n E = Eo - 0.0591 log Q n 48 http:\\asadipour.kmu.ac.ir 76 slides
Effect of Concentration on Cell EMF Ni(s) | Ni2+ (XM) || Sn2+ (YM) | Sn(s) Q=Ni2+/ Sn2+ Ni(s) + Sn2+ (YM)→ Ni2+(XM) + Sn(s)Eº= 0.090 V at 25oC: E = Eo - 0.0591logNi2+/ Sn2+ n Q=X/Y E=0.090-0.059/2×logx/y ------------------------------------------------------- Calculate the Eredfor the hydrogen electrode where 0.50 M H+ and 0.95 atm H2. 2H++2e →H2 E=0.000-0.059/2×logpH2/[H+]2 http:\\asadipour.kmu.ac.ir 76 slides
Emf of a cell Ni(s) | Ni2+(0.600M)|| Sn2+(0.300M) | Sn(s) Ni(s) + Sn2+→ Ni2+ + Sn(s)Eº= 0.090 V http:\\asadipour.kmu.ac.ir 76 slides