1 / 29

An exact microscopic multiphonon approach to nuclear spectroscopy

An exact microscopic multiphonon approach to nuclear spectroscopy. N. Lo Iudice Universit à di Napoli Federico II Naples (Andreozzi, Lo Iudice, Porrino) Prague (Knapp, Kvasil) Collaboration Tokyo 07. Eigenvalue problem in a multiphonon space. H | Ψ ν > = E ν | Ψ ν >

phyre
Download Presentation

An exact microscopic multiphonon approach to nuclear spectroscopy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. An exact microscopic multiphonon approach to nuclear spectroscopy N. Lo Iudice Università di Napoli Federico II Naples(Andreozzi, Lo Iudice, Porrino) Prague (Knapp, Kvasil) Collaboration Tokyo 07

  2. Eigenvalue problem in a multiphonon space H | Ψν > = Eν| Ψν > | Ψν > H= Σn Hn (n= 0,1.....N ) where Hn ∋|n, α > ~ | ν1 ν2 …..νn > | νi > = Σph cph(νi ) a†p ah |0> First goal: Generate the basis states |n, α > We do it byconstructing a setof equations of motionand solvingthemiteratively

  3. EOM: Construction of the Equations • Crucialingredient <n; β |[H, a†p ah]| n-1; α> • Preliminary step: Derive <n; β |[H, a†p ah]| n-1; α> = ( Eβ(n) - Eα(n-1))<n; β |a†p ah| n-1; α> (LHS) (RHS) TheRHS comes from * property <n; β|a†pah|n’; γ > = δn’,n-1< n; β |a†pah| n-1; γ > ** request < n; β|H|n; α > = Eα(n)δαβ

  4. Equations of Motion: LHS Commutator expansion <n; β| [H, a†p ah] | n-1; α>= (εp- εh) <n; β |a†p ah| n-1; α>. + 1/2 Σijp’ Vhjpk<n; β|a†p’ aha†i aj| n-1; α > + … Linearization <n; β| [H, a†p ah] | n-1; α >= Σp’h’γ[(εp- εh) δγβ+ 1/2 Σij Vhjp’k’ <n-1; γ|a†i aj| n-1; α> + ………]<n; β|a†p’ ah’| n-1; γ> = Σp’h’γAαγ(n)(ph;p’h’)<n; β|a†p’ ah’| n-1; γ> Î = Σγ|n-1; γ><n-1; γ|

  5. LHS=RHS AX = EX jγAαγ(n)(ij) Xγβ(n)(j)= (Eβ(n)- Eα(n1)) Xαβ(n)(i) where Xαβ(n)(i ) = < n; β |a†p ah| n-1; α> Aαγ(n)(ij)= [εp–εh]δij (n-1)δαβ(n-1) + [VPHρH+VHPρP +VPPρP + VHHρH ]αiβj ρH≡{< n,γ|a†hah’|n,α>} ρP≡ {< n,γ|a†pap’|n,α>} n =1 (ρP= 0ρH=δhh’) A(1)Xα(1) = (Eα(1) - E0 (0)) Xα(1) Tamm-Dancoff A(1)(ij)= δij[εp–εh] + V(p’hh’p)

  6. Structure of multiphonon states: Overcompletness The eigenvalue equations yield states of the structure |n; β> =Σαphcαph a†p ah| n-1; α > • Problem: The multiphononstates are not fully antysymmetrized !!! a†p ah| n-1; α > ≡  p h p h Themultiphononstates form an overcompleteset

  7. Solution of the redundancy γAαγ(n)Xγβ(n)= (Eβ(n) - Eα(n-1 ))Xαβ(n) A X = E X Reminder Insert |n; β> =Σα phCαph a†p ah| n-1; α > Xαβ(n)(ph)= < n; β | a†p ah| n-1; α > X = DC(AD)C= H C= E DC where Dij= < n-1; α’| ah’a†p’ a†p ah| n-1; α> overlapormetric matrix Problem due to redundancy Det D = 0

  8. Solution of the redundancy *Removal ofredundancy: Choleski decomposition(no diagonalization) DĎ ** Matrix inversion Exact eigenvectors |n; β>=Σ αphCαph a†p ah|n-1; α>  H n(phys) ● Now compute in Hn i. X(n) • ρ(n) recursive formula HC = (Ď-1AD)C = E C X=D C ρ(n) = C X (n)+ Cρ(n-1)X (n)

  9. Iterative generation of phonon basis Starting point|0> Solve Ĥ(1)C(1) = E(1)C(1) |n=1, α> X(1) ρ(1) Solve Ĥ(2)C (2) = E (2)C (2) |n=2,α> X(2) ρ(2) ……… X(n-1) ρ(n-1) Solve Ĥ(n)C (n) = E (n)C (n) X(n) ρ(n) |n,α.> The multiphonon basis is generated !!!

  10. H: Spectral decomposition, diagonalization H= Σ nαE α(n)|n; α><n;α| + (diagonal) + Σnα β|n; α><n;α| H |n’;β><n’;β| (off-diagonal) n’= n ±1, n±2 Off-diagonalterms: Recursive formulas < n; α | H| n-1; β > = Σphγϑαγ(n-1)(ph)Xγβ(n)(ph) < n; α | H| n-2; β > =ΣV pp’hh’Xγβ(n) (ph)Xγβ(n-1) (p’h’) Outcome of diagonalization H |Ψν> = Eν|Ψν> |Ψν> = Σnα Cα(ν) (n) | n;α> |n;α> = Σγ Cγ(n) | n-1;γ>

  11. Numericaltest: A = 16 ∙ Calculation up to 3-phonons and 3ħω Hamiltonian H = H0 + V = Σi hNils(i)+ Gbare ( VBonnA ⇨Gbare) • CM motion (F. Palumbo Nucl. Phys. 99 (1967)) H H+Hg Hg= g [P2/(2Am) + (½) mA ω2 R2] • Consistent choice of ph space: It must includes all ph configurations up to 3ħω

  12. Ground state |Ψ0> = C(0)0 |0> + ΣλCλ(0) |λ, 0> + Σλ1λ2Cλ1λ2(0) |λ1λ2, 0> |λ, 0> |λ1λ2, 0> 1 = < Ψ0|Ψ0> = P0 + P1 + P2

  13. 16O negative parity spectrum • Up to three phonons

  14. IVGDR |1->IV ~ |1(p-h) (1ħω)>

  15. ISGDR |1->IS ~ |1(p-h) (3 ħω)> + |2(p-h) (1ħω + 2ħω)> + |3(p-h) (1ħω )> Toroidal

  16. Octupole modes |3->IS ~ |1(p-h) (3 ħω)> + |2(p-h) (1ħω + 2ħω)> + |3(p-h) (1ħω )> Low-lying

  17. Effect of CM motion

  18. Effect of the CM motion

  19. Concluding remarks • The multiphonon eigenvalue equations - have a simple structure • yield exact eigensolutions of a general H • The 16O test shows that • an exact calculation in the full multiphonon space is feasible at least up to 3 phonons and 3 ħω. • To go beyond • Truncation of the space needed!!! • Truncation is feasible (the phonon states are correlated). • Ariformulation for an efficient truncation is in progress

  20. THANK YOU

  21. E2 response up to 3 ħω: Running sum Sn = Σn(En – E0(0) )Bn(E2,0→2+n) Rn= Sn/SEW(E2) • It is necessary to enlarge the space!!

  22. E2 response up to 3 ħω S(ω,E2) = ΣnBn(E2,0→2+n)ρΔ(ω-ωn) ρΔ(x) =(Δ/2π) / [x2 + (Δ/2)2] M(E2μ) = Σ(p)ep rp2 Y 2μ

  23. Effect of CM on the E2 response

  24. Growing evidence of multiphonon excitations * Low-energy M. Kneissl. H.H. Pitz, and A. Zilges, Prog. Part. Nucl. Phys. 37, 439 (1996); M. Kneissl. N. Pietralla, and A. Zilges, J.Phys. G, 32, R217 (2006) : • Two- and three-phonon multiplets Q2×Q3|0>, Q2×Q2×Q3|0> • Proton-neutron (F-spin) mixed-symmetry states (N. Pietralla et al. PRL 83, 1303 (1999)) [Q2(p)- Q2(n)](Q2(p)+ Q2(n))N|0>, ** High-energy (N. Frascaria, NP A482, 245c(1988); T. Auman, P.F. Bortignon, H. Hemling, Ann. Rev. Nucl. Part. Sc. 48, 351 (1998)) • Double and (maybe) tripledipole giant resonances D×D|0>

  25. From TDA to RPA A(n) B(n) X(n) = (E(n) - E(n-1)) B(n) A(n)-Y(n)

  26. Aαγ(n)(ph;p’h’)=δhh’δpp’δαγ(n-1)[εp–εh] + Σh1V(p’h1h’p) ραγ(n-1) (h1h) + Σp1V(p’hp1h’) ραγ(n-1) (pp1) + δhh’ [ Σp2p3V(p’p2pp3)ραγ(n-1) (p2p3) + Σh2h3V(p’h2ph3)ραγ(n-1)(h2h3)] + δpp’ [ Σh2h3V(hh2h’h3)ραγ(n-1)(h2h3) + Σp2p3V(hp2h’p3)ραγ(n-1)(p2p3)] Bαγ(n) (ph;p’h’)= Σh2V(p p’h2 h’)ραγ(n-1)(h2h) + Σp2V(h’hp2p’)ραγ(n-1)(pp2)

  27. AX = EX where Aαγ(n)(ph;p’h’)=δhh’δpp’δαγ(n-1)[εp–εh] + Σh1V(p’h1h’p) ραγ(n-1)(h1h) + Σp1V(p’hp1h’) ραγ(n-1)(pp1) + δhh’1/2Σp2p3V(p’p2pp3) ραγ(n-1)(p2p3) + δpp’1/2Σh2h3V(hh2h’h3) ραγ(n-1)(h2h3) (ραγ(n)(ij) = <n,α|a†iaj|n,α>)

  28. Any real non negative definite symmetric matrix can be written as D = L LT ( L{lij} lower triangular matrix) Det{D} = (Det{L})2 =l112 l222 ...lii2….. = λ21 …λ2i… (D | λi > = λi | λi > ) Definition of L: Recursive formulas l211 = d11 l11 lj1 = dj1 j=2,….,n l2ii = dii – Σk=1,i-1 l2ik lii lji = dji – Σk=1,i-1 lik ljk (It reminds the Schimdt orthogonalization method) The decomposition goes on until lnn = 0 lnn = 0 → Det{L} =0→Det{D} =0 ⇨ ⇨ | λn > (D | λi > = λi | λi > ) linearly dependent ⇨ to be discarded For numerical stability we need maximum overlap λj ≤ λi j > i Sequence order lii ≤ ljj j > i Oncelnn = 0 → lii = 0 i >n 1) We can stop at the nth step 2) We getĎ (Nn < Nr)withmaximum determinant(overlaps) Choleski decomposition

  29. HSM H = HSM+Hg Hg= g [P2/(2Am) + (½) mA ω2 R2] = g/A [Σi hi + Σi<j vij] hi=pi2/(2m) + (1/2) m(Aω)2ri2 vij=(1/m) pi· pj + m (Aω)2ri · rj Hg effective only in Jπ = 1-ph channel. HΨ = (HSM+Hg)Ψ =EΨ In the full space Ψ = ψintΦnCM For the physical states Ψn = ψn Φ0CM with CM energy E0CM= 3/2 g ħω For the spurious ones Ψn(1) = ψnΦ1CM at the very high CM energy E1CM- E0CM= g ħω They can therefore be tagged and eliminated Elimination of CM spuriosityF. Palumbo Nucl. Phys. 99 (1967)

More Related