310 likes | 784 Views
Lecture 8. Van Deemter Equation!. (. ). k’. 1. 1+k’. 4. efficiency. selectivity. retention. Resolution. Describes how well 2 compounds are separated. Rs = . N 1/2 ( -1). t R -t M. 1 < k’ < 10. k’ = . t M. (. ). k’. 1. 1+k’. 4. Resolution.
E N D
Lecture 8 Van Deemter Equation!
( ) k’ 1 1+k’ 4 efficiency selectivity retention Resolution Describes how well 2 compounds are separated Rs = N1/2 (-1) tR-tM 1 < k’ < 10 k’ = tM
( ) k’ 1 1+k’ 4 Resolution Describes how well 2 compounds are separated Rs = N1/2 (-1) L Maximize N N = H L H
Resolution • L - length of column • Cannot increase indefinitely • Limited by: • Long runs times • Back pressure (LC) • H - height equivalent of a theoretical plate • Measure of Efficiency • Always want to minimize H • Getting the best performance from system • H depends on: • column parameters • mobile phase • flow rate Described by Van Deemter
B ∞ Van Deemter Equation A + H + C is flow rate
Van Deemter Equation B A + ∞ H + C C H H min A B (flow rate)
Van Deemter Equation A term ‘Multipath Effect’
Van Deemter Equation A term ‘Multipath Effect’ Ce = particle shape dp = diameter of particle A Ce dp ∞ • A term • Entirely dependent on column • Only important in LC
Van Deemter Equation A term ‘Multipath Effect’ A ∞ H H A (flow rate)
Van Deemter Equation B term ‘Longitudinal diffusion’
Van Deemter Equation B term ‘Longitudinal diffusion’ DMP ∞ DMP = diffusivity of mobile phase B • B term • Inversely proportional to flow rate (fast) • Only important in GC (DMP of a gas) • Typical LC flow rate 0.2-0.5 mL/min • Typical GC flow rate 1-2 mL/min
Van Deemter Equation B term ‘Longitudinal diffusion’ B ∞ H H B (flow rate)
Van Deemter Equation C term ‘Mass transfer’ dt2 dt = diameter of tube DMP = diffusivity of MP ∞ GC C m DMP dp2 dp = diameter of particles DMP = diffusivity of MP = tortuosity ∞ LC C m DMP
Van Deemter Equation C term ‘Mass transfer’ dt2 ∞ GC C m DMP dp2 ∞ LC C m DMP
Van Deemter Equation C term ‘Mass transfer’ dt2 ∞ GC C m DMP dp2 ∞ LC C m DMP
Van Deemter Equation C term ‘Mass transfer’ dt2 ∞ GC C m DMP dp2 ∞ LC C m DMP
Van Deemter Equation C term ‘Mass transfer’ ∞ H C C H (flow rate)
Van Deemter Equation GC B X A + ∞ H + C C H H min A B (flow rate)
Van Deemter Equation GC B ∞ H + C C H H min B (flow rate)
Van Deemter Equation GC DMP dt2 ∞ + H m DMP C H H min B (flow rate)
Van Deemter Equation GC • Ideal Column (open tubular): • Small internal diameter (dt) • Use length to increase N (N=L/H) • Ideal Mobile Phase: • High diffusivity to C term and allow higher flow rates
Van Deemter Equation LC B X A + ∞ H + C C H H min A B (flow rate)
Van Deemter Equation LC A + ∞ H C C H A (flow rate)
Van Deemter Equation LC dp2 + Ce dp ∞ H DMP C H A (flow rate)
Van Deemter Equation LC • Ideal Column (packed): • Small particles (dp) • Uniform particles (Ce and ) • Cannot use length to increase N • Ideal Mobile Phase: • High diffusivity (DMP) to C term and allow higher flow rates
Van Deemter Equation LC dp2 + Ce dp ∞ H DMP Dong, M. Today’s Chemist at Work. 2000, 9(2), 46-48.
Van Deemter Equation LC dp2 + Ce dp ∞ H DMP Ascentis Express, Supelco, technical information