200 likes | 295 Views
Activating a Second Year Measurement Lab Sequence. Rick Sellens Mechanical and Materials Engineering Queen’s University at Kingston, Canada. You’re here, so you read the paper, right?. I can start from there and talk about the MECH 215 Labs. You’re here, so you read the paper, right?.
E N D
Activating a Second Year Measurement Lab Sequence Rick Sellens Mechanical and Materials Engineering Queen’s University at Kingston, Canada
You’re here, so you read the paper, right? I can start from there and talk about the MECH 215 Labs Rick Sellens
You’re here, so you read the paper, right? I can start from there and talk about the MECH 215 Labs Do your students all show up to labs having read the advance material? My students: Don’t read it in advance Read only the procedure during the lab session, and only if they have to Read only the reporting requirements after the lab session Your students may be different… Rick Sellens
Key Points (from your reading) • Active learning is good • Messy problems with imperfect information are good • Simple equipment is not bad • Students can do a lot in a lab if you make them do it • Having a faculty member (or similar) in the lab is good (and not as expensive as you might think) Rick Sellens
“Traditional” Labs • Maybe not 75 yrs old • Do follow a recipe • Should be foolproof • Deliver consistent, predictable results • Illustrate an important theoretical effect • Maximize throughput • Keep students from messing with the equipment Rick Sellens
TAs and Students as Co-Conspirators • “A well constructed, well documented lab can run without faculty monitoring” • Both TAs and Students want to finish quickly and easily • Both want good results • Good report • Easy to write • Easy to mark • 9 out of 10 Rick Sellens
Why Active Learning? • Read, Hear, See, Touch, DO! • All the usual good pedagogical advantages, plus • They will do the lab activity, even those who would never read the section in the text book or lab hand out. Rick Sellens
Thermometers – Too Easy? Rick Sellens
Incomplete Information • Do ask for transient behaviour of the thermometer. • Don’t specify: • How to time it • How often to measure • How long to measure • Force students to make a decision • Then check the data to see if the decision was a good one Rick Sellens
Just-in-Time Knowledge Delivery • Wait for the questions to form from the observation • Why the decay to equilibrium? • Why did it heat faster than it cooled? • Now they want to know something about heat capacity and convection coefficients • Now is a good time to deliver Rick Sellens
Planned Failure • We learn most about systems while troubleshooting them. • Why is your measurement not working? Rick Sellens
Multiple Paths to Success • Decide on a thermocouple reference source – bricks provided, or snow, or room temperature. • Decide how to read the voltage: • DVM more accurate on voltage • A/D more frequent sampling on accurate timebase Rick Sellens
Lab 0: Labview Programming • We found they needed a cookbook for this one • Build their own virtual instrument to use throughout the remaining labs • Need to have a canned VI as a fallback for trouble in this lab and later Rick Sellens
Lab 1: General Instrumentation • Play with basic instruments to find out what they can and can’t do. • Get used to measuring transients – dynamic systems are key • Run around the room measuring everybody else’s set up quality Rick Sellens
Lab 2: Temperature Measurement • Students weld up their own thermocouples • Lots of troubleshooting bad connections • Whose weld is best? (small bead, fast response) Rick Sellens
Lab 3: Stress and Strain • Students apply and solder strain gauges • High success rate! • Calibrate with weights of your choice Rick Sellens
Lab 4: Position Measurement • Decide how to measure position with a rotary potentiometer • Which team member can produce most nearly constant angular velocity? • Differentiate noisy data, twice • Play with GPS or optical tracking to measure capabilities Rick Sellens
Lab 5: Pressure and Flow • Transients in vacuum cleaner • Transients in Manometer • Fast solid state transducers • Actual results a combination • How high can you blow? • Balloon popping step function? Rick Sellens
Costs of being more active • Traditional lab: 2 TAs can do three groups in 2 – 3 hours • MECH 215: A faculty member and 2 Tas can do ten groups in 2 – 3 hours • Maybe we can afford to have faculty there for the whole lab experience(Can we get them to do it?) Rick Sellens
Conclusions • Active learning is good • Messy problems with imperfect information are good • Simple equipment is not bad • Students can do a lot in a lab if you make them do it • Having a faculty member (or similar) in the lab is good (and not as expensive as you might think) Rick Sellens