1 / 41

PROBABILITY

PROBABILITY. Probability. The likelihood or chance of an event occurring If an event is IMPOSSIBLE its probability is ZERO If an event is CERTAIN its probability is ONE So all probabilities lie between 0 and 1 Probabilities can be represented as a fraction, decimal of percentages

piper
Download Presentation

PROBABILITY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PROBABILITY

  2. Probability • The likelihood or chance of an event occurring • If an event is IMPOSSIBLE its probability is ZERO • If an event is CERTAIN its probability is ONE • So all probabilities lie between 0 and 1 • Probabilities can be represented as a fraction, decimal of percentages Probabilty 0 0.5 1 Impossibe Unlikely Equally Likely Likely Certain

  3. Experimental Probability • Relative Frequency is an estimate of probability • Approaches theoretic probability as the number of trials increases Example Toss a coin 20 times an observe the relative frequency of getting tails.

  4. Theoretical Probability • Key Terms: Each EXPERIMENT has a given number of specific OUTCOMES which together make up the SAMPLE SPACE(S). The probability of an EVENT (A) occurring must be such that A is subset of S • Experiment throwing coin die • # possible Outcomes, n(S) 2 6 • Sample Space, S H,T 1,2,3,4,5,6 • Event A (A subset S) getting H getting even #

  5. Theoretical Probability • Probability The probability of an event A occurring is calculated as: Examples • A fair die is rolled find the probability of getting: • a“6” • a factor of 6 • a factor of 60 • a number less than 6 • a number greater than 6 • One letter is selected from “excellent”. Find the probability that it is: • an “e” • a consonant • One card is selected from a deck of cards find the probability of selecting: • a Queen • a red card • a red queen B A

  6. Theoretical Probability • Conditional Probability Conditional Probability of A given B is the probability that A occurs given that event B has occurred. This basically changes the sample space to B Examples • A fair die is rolled find the probability of getting: • a “6” given that it is an even number • a factor of 6, given that it is a factor of 8 • One letter is selected from “excellent”. Find the probability that it is: • a “l” given it is a consonant • an “e”, given the letter is in excel • One card is selected from a deck of cards find the probability of selecting: • a Queen , given it is a face card • a red card given it is a queen • a queen, given it is red card B A {e,e,e} from {e,x,c,e,l,l,e}

  7. Theoretical Probability • Expectation The expectation of an event A is the number of times the event A is expected to occur within n number of trials, Examples • A coin is tossed 30 times. How many time would you expect to get tails? • The probability that Mr Bennett wears a blue shirt on a given day is 15%. Find the expected number of days in September that he will wear a blue shirt?

  8. Sample Space Sample Space can be represented as: • List • Grid/Table • Two-Way Table • Venn Diagram • Tree Diagram

  9. Sample Space • LIST: Bag A: 1 Black , 1 white . Bag B: 1 Black, 1 Red One marble is selected from each bag. • Represent the sample space as a LIST • Hence state the probability of choosing the same colours ANSWER:

  10. Sample Space • i)GRID: Two fair dice are rolled and the numbers noted • Represent the sample space on a GRID • Hence state the probability of choosing the same numbers ANSWER:

  11. Sample Space • ii)TABLE: Two fair dice are rolled and the sum of the scores is recorded • Represent the sample space in a TABLE • Hence state the probability of getting an even sum ANSWER:

  12. Sample Space • TWO- WAY TABLE: A survey of Grade 10 students at a small school returned the following results: A student is selected at random, find the probability that: • it is a girl • the student is not good at math • it is a boy who is good at Math • it is a girl, given the student is good at Math • the student is good at Math, given that it is a girl 36 20 25 31 56

  13. Sample Space • VENN DIAGRAM: The Venn diagram below shows sports played by students in a class: A student is selected at random, find the probability that the student: • plays basket ball • plays basket ball and tennis • Plays basketball given that the student plays tennis

  14. Sample Space • TREE DIAGRAM: Note: tree diagrams show outcomes and probabilities. The outcome is written at the end of each branch and the probability is written on each branch. Represent the following in tree diagrams: • Two coins are tossed • One marble is randomly selected from Bag A with 2 Black & 3 White marbles , then another is selected from Bag B with 5 Black & 2 Red marbles. • The state allows each person to try for their pilot license a maximum of 3 times. The first time Mary goes the probability she passes is 45%, if she goes a second time the probability increases to 53% and on the third chance it increase to 58%.

  15. Sample Space • TREE DIAGRAM: • Answer:

  16. Sample Space • TREE DIAGRAM: • Answer:

  17. Sample Space • TREE DIAGRAM: • Answer:

  18. Types of Events • EXHAUSTIVE EVENTS: a set of event are said to be Exhaustive if together they represent the Sample Space. i.e A,B,C,D are exhaustive if: P(A)+P(B)+P(C)+P(D) = 1 Eg Fair Dice: P(1)+P(2)+P(3)+P(4)+P(5)+P(6)=

  19. Types of Events • COMPLEMENTARY EVENTS: two events are said to be complementary if one of them MUST occur. A’ , read as “A complement” is the event when A does notoccur. A and A’ () are such that: P(A) + P(A’) = 1 • State the complementary event for each of the following • Eg Find the probability of not getting a 4 when a die is tossed P(4) = • Eg. Find the probability that a card selected at random form a deck of cards is not a queen. P(Q’)= A’ A

  20. Types of Events COMPOUND EVENTS: • EXCLUSIVE EVENTS: a set of event are said to be Exclusive (two events would be “Mutually Excusive”) if they cannot occur together. i.e they are disjoint sets • INDEPENDENT EVENTS: a set of event are said to be Independent if the occurrence of one DOES NOT affect the other. • DEPENDENT EVENTS: a set of event are said to be dependent if the occurrence of one DOES affect the other. A B

  21. Types of Events EXCLUSIVE/ INDEPENDENT / DEPENDENT EVENTS • Which of the following pairs are mutually exclusive events? Event A Event B Getting an A* in IGCSE Math Exam Getting an E in IGCSE Math Exam Leslie getting to school late Leslie getting to school on time Abi waking up late Abi getting to school on time Getting a Head on toss 1 of a coin Getting a Tail on toss 1 of a coin Getting a Head on toss 1 of a coin Getting a Tail on toss 2 of a coin • Which of the following pairs are dependent/independent events? Event A Event B Getting a Head on toss 1 of a coin Getting a Tail on toss 2 of a coin Alvin studying for his exams Alvin doing well in his exams Racquel getting an A* in Math Racquel getting an A* in Art Abi waking up late Abi getting to school on time Taking Additional Math Taking Higher Level Math

  22. Probabilities of Compound Events When combining events, one event may or may not have an effect on the other, which may in turn affect related probabilities B B B A A A

  23. Examples – Using “Complementary” Probability • The table below show grades of students is a Math Quiz Find the probability that a student selected at random scored at least 2 on the quiz (i)By Theoretical Probability (ii) By Complementary

  24. Examples – Using “OR” Probability • A fair die is rolled, find the probability of getting a 3 or a 5. (i)By Sample Space (ii) By OR rule

  25. Examples – Using “AND” Probability • A fair die is rolled twice find the probability of getting a 5 and a 5. (i)By Sample Space (ii) By AND rule

  26. Examples – Using “OR” /“AND” Probability • A fair die is rolled twice find the probability of getting a 3 and a 5. (i)By Sample Space (ii) By AND/OR rule

  27. Mixed Examples • From a pack of playing cards, 1 card is selected. Find the probability of selecting: • A queen or a king • Heart or diamond • A queen or a heart • A queen given that at face card was selected • A card that has a value of at least 3 (if face cards have a value of 10 and Ace has a value of 1) P(Q)+P(H)-P(Q&H)=

  28. Mixed Examples • From a pack of playing cards, 1 card is selected noted and replaced, then a 2nd card is selected and noted. Find the probability of selecting: • A queen and then a king • A queen and a king • Two cards of same number • Two different cards P(Q&K) or P(K&Q)= P(A&A) or P(2&2) or ….PK&K) = 1-P(same) =

  29. Mixed Examples • From a pack of playing cards, 1 card is selected noted , it is NOT replaced, then a 2nd card is selected and noted. Find the probability of selecting: • A queen and then a king • A queen and a king • Two cards of same number • Two cards with different numbers

  30. Probabilities of Repeated Events • A coin is tossed 3 times find the probability of getting: • tail exactly once • a tail AT LEAST once • A die is tossed until a 6 appears. Find the probability of getting a 6: • on the 2nd toss • on the 3rd toss • on the nthtoss

  31. Tree Diagrams 1. A die is tossed twice. Draw a tree diagram and find the probability of getting and even number and an odd number.

  32. Tree Diagrams 1.

  33. Tree Diagrams 2. i) Find the probability that: a) he is on time for school b) he is on time everyday in a 5 day week c) he is on time once in a 5 day week ii)If there are 60 days this term, how many days would you expect Jack to be late this term?

  34. Tree Diagrams 2. i) a) b) c) ii)

  35. Tree Diagrams 3.

  36. Tree Diagrams 3a).

  37. Tree Diagrams 3b)

More Related