1 / 17

3-5: Linear Programming

Learn how to conduct linear programming with constraints and optimize objective functions. Practice graphing constraints, finding vertices, and calculating minimum and maximum values. Understand how businesses apply linear programming for profit maximization and cost minimization.

pjulie
Download Presentation

3-5: Linear Programming

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 3-5: Linear Programming

  2. Learning Target • I can solve linear programing problem.

  3. Terms • Optimization – is finding the minimum or maximum value of some quantity. • Linear programming is a form of optimization where you optimize an objective function with a system of linear inequalities called constraints. • The overlapped shaded region is called the feasible region.

  4. Solving a linear programming problem 1. Graph the constraints. 2. Locate the ordered pairs of the vertices of the feasible region. 3. If the feasible region is bounded (or closed), it will have a minimum & a maximum. If the region is unbounded (or open), it will have only one (a minimum OR a maximum). 4. Plug the vertices into the linear equation (C=) to find the min. and/or max.

  5. A note about: Unbounded Feasible Regions • If the region is unbounded, but has a top on it, there will be a maximum only. • If the region is unbounded, but has a bottom, there will be a minimum only.

  6. Linear Programming Businesses use linear programming to find out how to maximize profit or minimize costs. Most have constraints on what they can use or buy.

  7. Find the minimum and maximumvalue of the function f(x, y) = 3x - 2y. We are given the constraints: • y ≥ 2 • 1 ≤ x ≤5 • y ≤ x + 3

  8. Linear Programming • Find the minimum and maximum values by graphing the inequalities and finding the vertices of the polygon formed. • Substitute the vertices into the function and find the largest and smallest values.

  9. 1 ≤ x ≤5 8 7 6 5 4 y ≥ 2 3 2 y ≤ x + 3 1 3 5 4 1 2

  10. Linear Programming • The vertices of the quadrilateral formed are: (1, 2) (1, 4) (5, 2) (5, 8) • Plug these points into the function f(x, y) = 3x - 2y

  11. Linear Programming f(x, y) = 3x - 2y • f(1, 2) = 3(1) - 2(2) = 3 - 4 = -1 • f(1, 4) = 3(1) - 2(4) = 3 - 8 = -5 • f(5, 2) = 3(5) - 2(2) = 15 - 4 = 11 • f(5, 8) = 3(5) - 2(8) = 15 - 16 = -1

  12. Linear Programming • f(1, 4) = -5 minimum • f(5, 2) = 11 maximum

  13. Find the minimum and maximum value of the function f(x, y) = 4x + 3y We are given the constraints: • y ≥ -x + 2 • y ≤ x + 2 • y ≥ 2x -5

  14. y ≥ 2x -5 6 5 4 3 y ≥ -x + 2 2 1 1 2 3 4 5

  15. Vertices f(x, y) = 4x + 3y • f(0, 2) = 4(0) + 3(2) = 6 • f(4, 3) = 4(4) + 3(3) = 25 • f( , - ) = 4( ) + 3(- ) = -1 =

  16. Linear Programming • f(0, 2) = 6 minimum • f(4, 3) = 25 maximum

  17. Pair-share Work on page 166 to 167 on #9 to 17 Homework Homework on page 167 #18 to #20

More Related