1 / 10

利用代數法求二次函數的特性

利用代數法求二次函數的特性. 形式為 y = a ( x – h ) 2 + k 的二次函數的圖像有甚麼特性呢 ?. 試逐一考慮以下的情況 : a > 0, a < 0. 對於所有 x 的值 , ( x – h ) 2  0. y = a ( x – h ) 2 + k. 情況 1: a > 0.  當 x = h 時 , y 的對應值是一個極小值 。. y 的極小值 = a ( h – h ) 2 + k. = k. 對稱軸是 x = h. y. x. 0.

platt
Download Presentation

利用代數法求二次函數的特性

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 利用代數法求二次函數的特性

  2. 形式為 y = a(x – h)2 + k的二次函數的圖像有甚麼特性呢? 試逐一考慮以下的情況:a > 0, a < 0

  3. 對於所有 x 的值,(x – h)2 0 y = a(x – h)2 + k 情況 1: a > 0  當 x = h時,y的對應值是一個極小值。 y的極小值 = a(h – h)2 + k = k

  4. 對稱軸是 x = h y x 0 頂點 (最低點) = (h, k) y = a(x – h)2 + k的圖像 (a > 0)

  5. 對於所有 x的值,(x – h)2 0 y = a(x – h)2 + k 情況 2: a < 0  當 x = h時,y的對應值是一個極大值。 y的極大值 = a(h – h)2 + k = k

  6. 頂點 (最高點) = (h, k) y x 0 對稱軸是 x = h y = a(x – h)2 + k的圖像 (a < 0 )

  7. x = h x = h 最高點 = (h, k) 最低點 = (h, k) 極大值 = k 極小值 = k 向上 向下 y = a(x – h)2 + k 的圖像的特性

  8. 你能夠找出 y = –(x + 5)2 + 7 的 圖像的對稱軸和它的極值嗎? x = h 極值 = k a < 0 考慮方程 y = –(x + 5)2 + 7,可得 a = –1,h = –5 及 k = 7。 圖像的對稱軸是 x = –5。 y的極值 (極大值) 是 7。

  9. 對於形式為 y = ax2 + bx + c的函數,我們應該怎樣做呢? 先利用配方法。 把 y = ax2 + bx + c寫成 y = a(x – h)2 + k 的形式。

  10. y = a(x – h)2 + k a = –4 < 0 課堂研習 求 y = –4x2 + 16x – 15 的極值及其圖像的開口方向。 y = –4x2 + 16x – 15 = –4(x2 – 4x) – 15 = –4(x2 – 4x + 22 – 22) – 15 = –4(x2 – 4x + 4) + 16 – 15 = –4(x – 2)2 + 1  函數的圖像的開口向下及有一個最高點。  極大值是 1。

More Related