500 likes | 568 Views
Global, Regional, and Urban Climate Effects of Air Pollutants. Mark Z. Jacobson Dept. of Civil & Environmental Engineering Stanford University. Modeled CO 2 (g) and Modeled v Measured Ocean pH 1751-2003. CO 2 (g) mixing ratio (ppmv). Surface ocean pH.
E N D
Global, Regional, and Urban Climate Effects of Air Pollutants Mark Z. Jacobson Dept. of Civil & Environmental Engineering Stanford University
Modeled CO2(g) and Modeled v Measured Ocean pH 1751-2003 CO2(g) mixing ratio (ppmv) Surface ocean pH Data from Friedli et al. (1986) and Keeling and Whorf (2003)
Modeled Ocean Profiles 2004; 2104 Under SRES A1B Emission Scenario Depth (m) Depth (m)
Effect of CO2(g) on Atmospheric Acids Mixing ratio (ppbv)
Comparison of ff BC Climate Responses 1. Jacobson (JGR 107, D19, 2002). Size resolved (1 distribution) multi-component aerosols, size-resolved cloud formation on aerosols, size-resolved treatment of first and part of second indirect effects, climatological snow/ice albedo, emissions of Cooke et al. (1999), 2-D ocean module, many feedbacks. • Fossil fuel BC+OM: +0.3 K (5-y average) +0.35 K (last year) Range of all simulations (+0.15 to +0.5) 2. Ibid. (JGR 2004, in press). Same as (1) but treated first and second indirect effects, calculated snow/ice albedo, used early Bond et al. (2004) inventory. • Fossil fuel + biofuel BC+OM: +0.27 K (10-y avg. snow contrib. +0.06 K) 3. Ibid. Recent results. Same as (2) but used most recent Bond et al (2004) emission,, used two distributions (emitted ff+bf BC+OM and emitted other + heterocoagulated BC) and 10 layers of energy diffusion to deep ocean. • Fossil fuel + biofuel BC+OM: +0.29 K (6-y avg.)
With snow/sea ice absorption and with-w/o ff+bf BC+OM Contribution of BC absorption by snow/sea ice Pressure (hPa) Pressure (hPa) Ten-Year-Avg. Globally-Averaged Temperature Profile Differences
Temperature Changes Due to Eliminating Emission of Anthropogenic CO2, CH4, and f.f. BC+OM Cooling (K) after eliminating anthropogenic emission
Observed and Modeled Temp. Diff. w-w/o GHG and Aerosols (January only Schneider and Held (2001) Latitude (degrees) (4 y an. avg.)
Modeled (4 y avg.) Temp. Diff. w-w/o Anth. GHG alone Latitude (degrees)
Temperature deviation (K) Altitude (km) Radiosonde data Angell et al. (1999) Modeled (4 y avg.) and Radiosonde Vertical Temp. (K) dif. w-w/o GHG and Aerosols 300-100 mb ≈ 9-16 km 100-30 mb ≈ 16-24 km
Latitude (degrees) Latitude (degrees) Feb. & Aug. California Column BC Dif. w-w/o Anth. Aer.
Latitude (degrees) Latitude (degrees) Column POM Dif. w-w/o Anth. Aer.
Latitude (degrees) Latitude (degrees) Column SOM Dif. w-w/o Anth. Aer.
Latitude (degrees) Latitude (degrees) Column S(VI) Dif. w-w/o Anth. Aer.
Latitude (degrees) Latitude (degrees) Column NO3- Dif. w-w/o Anth. Aer.
Latitude (degrees) Latitude (degrees) Column NH4+ Dif. w-w/o Anth. Aer.
Latitude (degrees) Latitude (degrees) Column Aerosol LWC Dif. w-w/o Anth.Aer.
Latitude (degrees) Latitude (degrees) Column Total Aerosol Dif. w-w/o Anth. Aer.
Latitude (degrees) Latitude (degrees) Aerosol 550 nm Optical Depth Dif. w-w/o Anth.Aer.
Latitude (degrees) Latitude (degrees) Cloud 550 nm Optical Depth Dif. w-w/o Anth.Aer.
Pressure (hPa) Cloud 550 nm Scattering Optical Depth Profile Dif.
Latitude (degrees) Latitude (degrees) Down-Up Surface Solar Radiation Dif. w-w/o Anth.Aer.
Latitude (degrees) Latitude (degrees) Down-Up Surface Thermal-IR Radiation Dif. w-w/o Anth.Aer.
Pressure (hPa) Irradiance Profile Dif. Over California
Latitude (degrees) Latitude (degrees) Near-surface Temperature Dif. w-w/o Anth.Aer.
Altitude (km) Altitude (km) Zonal Temp. Profile Dif. w-w/o Anth.Aer.
Pressure (hPa) Temperature Profile Dif. Over California
Latitude (degrees) Latitude (degrees) Near-surface RH Dif. w-w/o Anth.Aer.
Altitude (km) Altitude (km) Zonal RH Dif. w-w/o Anth.Aer.
Latitude (degrees) Latitude (degrees) Cloud LWC Dif. w-w/o Anth.Aer.
Pressure (hPa) Pressure (hPa) Cloud Liquid and Ice Profile Dif. Over California
Latitude (degrees) Modeled vs. Measured Feb. 1999 Precipitation
Latitude (degrees) Modeled Feb. 1999 vs. Measured Feb. Clim. Prec. Data courtesy of Guido Franco
Latitude (degrees) Latitude (degrees) Precipitation Dif. w-w/o Anth.Aer.
Latitude (degrees) Latitude (degrees) Baseline BC in precipitation
Latitude (degrees) Latitude (degrees) SCAB Column Total Aerosol Dif. w-w/o Anth.Aer.
Latitude (degrees) Latitude (degrees) SCAB Aerosol Optical Depth Dif. w-w/o Anth.Aer.
Latitude (degrees) Latitude (degrees) SCAB Cloud Optical Depth Dif. w-w/o Anth.Aer.
Pressure (hPa) Cloud 550 nm Scattering Optical Depth Profile Dif.
Latitude (degrees) Latitude (degrees) SCAB Down-Up Surface Solar Radiation Dif. w-w/o Anth.Aer.
Latitude (degrees) Latitude (degrees) SCAB Downward UV Radiation Dif. w-w/o Anth.Aer.
Latitude (degrees) Latitude (degrees) SCAB Near-Surface OH Dif. w-w/o Anth.Aer.
Latitude (degrees) Latitude (degrees) SCAB Down-Up Surface Thermal-IR Radiation Dif. w-w/o Anth.Aer.
Pressure (hPa) Irradiance Profile Dif. Over SCAB
Latitude (degrees) Latitude (degrees) SCAB Near-Surface Temperature Dif. w-w/o Anth.Aer.
Pressure (hPa) Temperature Profile Dif. Over SCAB
Latitude (degrees) Latitude (degrees) SCAB Baseline Precipitation
Latitude (degrees) Latitude (degrees) SCAB Precipitation Dif. w-w/o Anth.Aer.
Summary • Globally-averaged surface ocean pH may have decreased from about 8.25 to 8.14 from 1751 to 2004 Under the SREAS A1B emission scenario, pH may decrease to 7.85 in 2100, for an increase in the hydrogen ion by a factor of 2.5 since 1751. Ocean acidification may increase concentrations of atmospheric acids and decrease those of bases, although the magnitude is uncertain. • Three global simulation results suggest a warming due to ff+bf BC of +0.25 to +0.3 K in the 5- to 10-year average with a range of +0.15 K to +0.5 K • Maximum warming and cooling due to anthropogenic GHGs and aerosols exceed those of GHGs alone. Aerosols act on top of GHGs to enhance extreme warm and cool climate conditions. • Modeled aerosol particles and gas-phase precursors appear to decrease precipitation in mountainous regions and increase it beyond the mountains, cool surface-air temperatures, slightly increase atmospheric temperatures, reduce solar and UV radiation and OH, and increase thermal-IR radiation to the surface in California.