1 / 70

Electron diffraction of commensurately and incommensurately modulated materials

Electron diffraction of commensurately and incommensurately modulated materials. Joke Hadermann. www.slideshare.net/johader/. Modulation =. Incommensurate/commensurate. Basic cell, one plane. b. a. One atom type A. Basic cell EDP. [001]. b. 010. a. 100. One atom type A.

pooky
Download Presentation

Electron diffraction of commensurately and incommensurately modulated materials

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Electrondiffraction of commensurately and incommensuratelymodulatedmaterials Joke Hadermann www.slideshare.net/johader/

  2. Modulation =

  3. Incommensurate/commensurate

  4. Basic cell, one plane b a Oneatom type A

  5. Basic cell EDP [001] b 010 a 100 Oneatom type A

  6. basic cell, SF [001] b 010 a 100 Oneatom type A

  7. double cell model b a Alternation A and B atoms

  8. double cell, EDP= [001] b 010 a 100 Alternation A and B atoms

  9. double cell, g vectors= [001] b 010 a 100 Alternation A and B atoms Reflections at

  10. [001] double cell start choice 010 100

  11. [001] double cell, supercell 010 100

  12. [001] double cell, q-vector 010 100

  13. [001] double cell, supercell indices b a 010 b’ 010 100 100 a’

  14. [001] double cell, q-vector indices b a 010 100 q

  15. [001] double cell, satellites weaker b’ 010 100 a’

  16. [001] double cell, SF b’ 010 100 a’

  17. [001] double cell, odd vs. even b’ 010 100 a’ If k=2n+1 If k=2n

  18. general modulation along main If the periodicity of the modulation in direct space is nb: Extra ref.: Canusesupercell:

  19. overview 2b Extra reflections [001] b’ 010 a’ 010 100

  20. overview 3b Extra ref.: [001] b’ 010 a’ 010 100

  21. overview 4b Extra ref.: [001] b’ 010 a’ 010 100

  22. Modulationnótalongmainaxis of basicstructure b b a a

  23. 3 x d110 Modulation nót along main axis of basic structure (110) b b a a

  24. 3 x d110 clear Modulation nót along main axis of basic structure (110) b a

  25. 3x d110 ED, g Modulation nót along main axis of basic structure (110) [001] b 010 a 110 100

  26. 110, indexed in basic [001] 010 1/3 1/3 0 2/3 2/3 0 110 100

  27. 110, indexed in 3a x 3b [001] 010 030 11 0 22 0 110 100 330 300

  28. 110, indexed in correct supercell [001] - 120 010 010 100 110 100

  29. 110, indexed in correct supercell, complete [001] - 120 010 010 110 100 200 110 100 - 300 210

  30. 110, P matrix reciprocal relation [001] b’* b* a’* a*

  31. 110, P matrix rec to direct [001] b’* b* a’* a*

  32. 110, P to direct cell b’ b a a’

  33. advantage b’ b a a’

  34. general supercell ,,=p/n Càntakesupercell e.g. n x basiccell parameter

  35. the trouble with 0.458 ,,=p/n Càntakesupercell e.g. n x basiccell parameter 0.458=229/500 ! Approximations: 5/9=0.444, 4/11=0.455, 6/13=0.462,… Different cells, spacegroups, inadequate forrefinements,…

  36. The q-vectorapproach All reflections hklm Basicstructurereflections hkl0

  37. double, ED, g [001] double ED, g b 010 a 100

  38. [001] double in q b 010 a 100

  39. double indexed with q double indexed with q [001] 0100 q 010 0001 1001 100 1000

  40. 0.458: q indicated 010 q 100

  41. 0.458 indexed with q 0100 0001 010 - q 0101 100 1000

  42. all four with q 0100 0100 1000 1000 0100 0100 1000 1000

  43. [001] 110, with q 0100 010 q 0001 0002 100 1000

  44. advantages of the q-vector method Advantages of the q-vector method: - subcellremainsthe same - alsoapplicable to incommensuratemodulations

  45. Incommensuratelymodulatedmaterials Loss of translationsymmetry

  46. LaCaCuGa(O,F)5 Example of a compositionalmodulation LaCaCuGa(O,F)5: amountF variessinusoidally Hadermann et al., Int.J.In.Mat.2, 2000, 493

  47. Bi2201 Example of a displacivemodulation Bi-2201 Picture from Hadermann et al., JSSC 156, 2001, 445

  48. Reciprocal space: reflections only Projectionsfrom 3+d reciprocalspace & “simple” supercell in 3+d space q (Example in 1+1 reciprocalspace)

  49. e2 + q =a2* Projectionsfrom 3+d reciprocalspace & “simple” supercell in 3+d space a2*=e2+q a2* e2 q a1* (Example in 1+1 reciprocalspace)

  50. reciprocal unit cell a1* x a2* Projectionsfrom 3+d reciprocalspace & “simple” supercell in 3+d space a2*=e2+q a2* e2 q a1* (Example in 1+1 reciprocalspace)

More Related