220 likes | 347 Views
A Bioelectronic Sensor Interface Based on Trifunctional Linking Molecules. Brian Hassler, Megan Dennis, Maris Laivenieks * , Robert Y. Ofoli, J. Gregory Zeikus * , and R. Mark Worden Chemical Engineering and Material Science * Biochemistry and Molecular Biology Michigan State University
E N D
A Bioelectronic Sensor Interface Based on Trifunctional Linking Molecules Brian Hassler, Megan Dennis, Maris Laivenieks*, Robert Y. Ofoli, J. Gregory Zeikus*, and R. Mark Worden Chemical Engineering and Material Science *Biochemistry and Molecular Biology Michigan State University East Lansing, Michigan Presented at 2004 Annual AIChE Conference November 7 - 12, 2004, Austin, TX Center for Nanostructured Biomimetic Interfaces
Presentation Outline • Background • Dehydrogenase enzyme • Bioelectronic interface • Project goals • Site directed enzyme mutagenesis • Characterization of bioelectronic interface • Cyclic voltammetry • Chronoamperometry • Conclusions Center for Nanostructured Biomimetic Interfaces
NAD(P)+ S enzyme cofactor mediator MEDred NAD(P)H MEDox P Dehydrogenase Enzyme Reaction Cofactor Regeneration Background • Dehydrogenase enzymes • Catalyze electron transfer reactions • Activity easily measured electrochemically • Bioelectronic applications • Often require cofactor (e.g., NAD(P)+) • Challenge: regenerating cofactor after reaction Center for Nanostructured Biomimetic Interfaces
Background on Enzyme • Model enzyme • secondary alcohol dehydrogenase (sADH) • Thermoanaerobacter ethanolicus • Thermal stability • Activity range: 7°C – 95°C Center for Nanostructured Biomimetic Interfaces
Background on Enzyme • Cofactor specificity: NADP+ • Amino acids affecting NADP+ affinity binding • 198, 199, 200, 203, 218 Center for Nanostructured Biomimetic Interfaces
Med Enz Cof Elec 2 e- 2 e- Background on Cofactor Regeneration • Electron mediator required • Shuttles electrons between electrode and cofactor • Prevents cofactor degradation • Linear structure • Mediator requirements • Two unique functional groups • Bind to electrode • Bind to cofactor • Few suitable mediators (Zayats, et al., J. Am. Chem. Soc. 2002, 124, 14724-14735) Center for Nanostructured Biomimetic Interfaces
Research Goals • Enhance enzyme activity withNAD+ • Retain thermal stability • Generate a unique electron transfer scaffold • Using a hetro-trifunctional linking molecule • Suitable for wider range of electron mediators Center for Nanostructured Biomimetic Interfaces
Mutant 3’ - end Enzyme Mutagenesis PCR amplification 1 5’ primer 5’ primer Wild type template Wild type template 3’ primer 3’ primer 5’ primer Mutant primer - end Mutant 5’ Mutant primer 3’ primer PCR amplification 2 Complete mutant Center for Nanostructured Biomimetic Interfaces
Clone adhB Gene Into pCR 2.1 Vector Insert mutant gene into lacZ gene Transformed cell containing the PCR product will grow white on X-gal Cells with plasmid will have ampicillin & kanamycin resistance Center for Nanostructured Biomimetic Interfaces
Enzymatic Activities of Wild Type, Mutant Strains • NADP+ • NAD+ Center for Nanostructured Biomimetic Interfaces
Med Enz Cof Elec Med Enz Cof 2 e- 2 e- Elec 2 e- 2 e- Cofactor Regeneration by Electrode • Linear structure • Mediator requirements • Two unique functional groups • Few suitable mediators • Branched structure • Mediator requirements • Single functional group • Many suitable mediators Center for Nanostructured Biomimetic Interfaces
NAD+ TBO cysteine gold electrode Enzyme Interface Assembly • Cysteine: branched, trifunctional linker • Thiol group: self assembles on gold • Carboxyl group: binds to electron mediator • Amine group: binds to phenylboronic acid • Mediators used • Toluidine Blue O (TBO) • Nile Blue A • Neutral Red Center for Nanostructured Biomimetic Interfaces
Characterization Tools • Cyclic Voltammetry • Calibration plots • Turnover ratio • Effects of increased temperatures • Chronoamperometry • Electrode kinetics Center for Nanostructured Biomimetic Interfaces
Cyclic Voltammetry Y218F-mutant sADH • Cyclic voltammetry • Substrate: Isopropanol, in phosphate buffer, pH=7.4 • High voltage: 400mV • Low voltage: -200 mV • Scan rate: 100 mV/s • Electrode area: 1 cm2 • Calibration plot: • Slope: 1 mA/mM • Isat= 42mA • Turnover ratio: • 65 s-1 Center for Nanostructured Biomimetic Interfaces
Cyclic Voltammetry Wild-Type sADH • Cyclic voltammetry • Substrate: Isopropanol, in phosphate buffer, pH=7.4 • High voltage: 400mV • Low voltage: -200 mV • Scan rate: 100 mV/s • Electrode area: 1 cm2 • Calibration plot: • Slope: 1.67 mA/mM • Isat= 80mA • Turnover ratio: • 450 s-1 Center for Nanostructured Biomimetic Interfaces
Chronoamperometry • Procedure • Step change in potential • Initial Potential (E1): -200 mV • Final Potential (E2): 400 mV • Plot current vs. time • Characterization • Equation • Measurable variables • ket= Electron transfer constant • Q= Charge associated with oxidation/reduction I=ket’Q’exp(-ket’t)+ket”Q”exp(-kett) (Forster, R. J. Langmuir1995, 11, 2247-2255) Center for Nanostructured Biomimetic Interfaces
Chronoamperometry Y218F-mutant sADH-NAD+ • Forster equation • Best fit ket values • ket’= 7.0x104 s-1 • ket”= 5.5x103 s-1 • Surface coverage =Q/nFA • ’= 9.56x10-13 mol cm-2 • ”= 7.55x10-12 mol cm-2 I=ket’Q’exp(-ket’t)+ket”Q”exp(-kett) Center for Nanostructured Biomimetic Interfaces
Chronoamperometry Wild Type-sADH • Forster equation • Best fit ket values • ket= 7.0x104 s-1 • Surface coverage • = 2.34x10-12 mol cm-2 I=ket’Q’exp(-kett) I=ket’Q’exp(-ket’t)+ket”Q”exp(-kett) Center for Nanostructured Biomimetic Interfaces
Determination of Thermostability • Temperatures Measured • 25 °C (I= 9 mA) • 35 °C (I= 15 mA) • 45 °C (I= 21 mA) • 50 °C (I= 25 mA) • 60 °C (I= 38 mA) • 65 °C (I= 8 mA) Center for Nanostructured Biomimetic Interfaces
Conclusions • Mutant sADH developed • Increased activity with NAD+ • Novel electron transfer scaffold developed • Trifunctional linking molecule • Wider range of mediators • Bioelectronic interface with sADH developed • Electrode kinetics measured • Calibration curves developed • Stable up to 60 °C Center for Nanostructured Biomimetic Interfaces
Acknowledgements • Funding • Michigan Technology Tri-Corridor • Department of Education GAANN Fellowship • Undergraduate students involved • John Baldrey • Timothy Howes Center for Nanostructured Biomimetic Interfaces
Thank you Center for Nanostructured Biomimetic Interfaces