190 likes | 403 Views
מבוא לכלכלה ב'. מצגת 7 המודל הקינסיאני במשק סגור עם ממשלה ענת אלכסנדרון המרכז האקדמי רופין. מדיניות ממשלתית (פיסקאלית). קיימים שני צדדים למדיניות ממשלתית (פיסקאלית): קביעת הצריכה הציבורית ( G ) השפעה על הביקוש המצרפי: AD = C + I + G קביעת דרך המימון של הצריכה הציבורית:
E N D
מבוא לכלכלה ב' מצגת 7 המודל הקינסיאני במשק סגור עם ממשלה ענת אלכסנדרון המרכז האקדמי רופין
מדיניות ממשלתית (פיסקאלית) קיימים שני צדדים למדיניות ממשלתית (פיסקאלית): • קביעת הצריכה הציבורית (G) השפעה על הביקוש המצרפי: AD = C + I + G • קביעת דרך המימון של הצריכה הציבורית: • הנפקת אג"ח (מימון גרעוני) • מיסוי בסכום קבוע • מיסוי יחסי • תזכורת:G – סך כל הוצאות הממשלה בתקציב השוטף (קניות מפירמות + שכר ומשכורות) • השפעה על ההכנסה הפנויה (YD) • השפעה על הצריכה הפרטית המתוכננת C(Y)
הצריכה הציבורית • הנחה: הביקוש של הממשלה לצריכה ציבורית קבוע – הוא אינו תלוי ב-Y G G Y
דוגמה 1: הוצאות ממשלה במימון אג"ח מצב מוצא • C = 800 + 0.6YD • G = T = 0 • I = 200 • תוצר תעסוקה מלאה: 3000 • הפירמות מחלקות את כל רווחיהן מצב חדש • הממשלה מגדילה את הצריכה שלה ב-200 במימון מלווה מהציבור
ניתוח דוגמה 1 – מצב המוצא • YD = Y • AD = 1000 + 0.6Y • בשיווי-משקל: Y* = 2500 • פער התוצר: YF – Y* = 500 • פער דפלציוני: YF – AD(YF) = 200
ניתוח דוגמה 1: מצב חדש • YD = Y • AD = 1200 + 0.6Y • דגש: G גדל בגודל הפער הדפלציוני • בשיווי-משקל: Y* =3000 • פער התוצר: YF – Y* = 0 • פער דפלציוני: YF – AD(YF) = 0 • דגש: בעקבות הגידול ב-G בגודל הפער הדפלציוני, המשק הגיע לשיווי-משקל של תעסוקה מלאה
מקרה 1: גידול בהוצאות ממשלה במימון אג"ח • הנחה: במצב במוצא המשק מצוי בפער דפלציוני • הנחה: הגידול ב-G קטן או שווה לפער הדפלציוני • במצב המוצא: AD = AD0 + MPEY • השינוי בביקוש המצרפי: AD0 = G • התוצאה: GKY* =
דוגמה 2: הוצאות ממשלה במימון מס קבוע מצב מוצא (זהה לדוגמה 1) • C = 800 + 0.6YD • G = T = 0 • I = 200 • תוצר תעסוקה מלאה: 3000 • הפירמות מחלקות את כל רווחיהן מצב חדש • הממשלה מגדילה את הצריכה שלה ב-200 במימון מס קבוע
ניתוח דוגמה 2: מצב חדש • YD = Y – 200 • C = 800 + 0.6(Y - 200) • C = 680 + 0.6Y • AD = 1080 + 0.6Y • בשיווי-משקל: Y* =2700 • פער התוצר: YF – Y* = 300 • פער דפלציוני: YF – AD(YF) = 3000 - 2880 • דגש: בעקבות הגידול ב-G בגודל הפער הדפלציוני, התוצר גדל בדיוק בגודל הגידול בצריכה הציבורית.
מקרה 2א: גידול בהוצאות הממשלה במימון מס קבוע בהנחת תקציב מאוזן: G = T • השינוי בפונקצית התצרוכת: C0 = -MPCT • אין שינוי ב-MPC • השינוי בביקוש המצרפי: חל שינוי אך ורק בגודל האוטונומי של הביקוש המצרפי: AD0 = G(1-MPC) • השינוי בתוצר: Y* = G(1-MPC)K • מאחר ש- MPI = 0MPE = MPCY* = G • אם MPI > 0(1-MPC)K > 1Y* > G
מקרה 2ב: גידול בהוצאות הממשלה במקביל לשינוי במס הקבוע • דגש: לא מניחים כי G = T • השינוי בפונקצית התצרוכת: C0 = -MPCT • אין שינוי ב-MPC • השינוי בביקוש המצרפי: חל שינוי אך ורק בגודל האוטונומי של הביקוש המצרפי: AD0 = G - MPCT • השינוי בתוצר: Y* = (G - MPCT)K
דוגמה 3: גידול בהוצאות הממשלה כאשר קיים מס יחסי מצב מוצא • C = 800 + 0.6YD • G = 0 • I = 200 • מס הכנסה בשיעור 0.25 • תוצר תעסוקה מלאה: 3000 • הפירמות מחלקות את כל רווחיהן מצב חדש • הממשלה מגדילה את הצריכה שלה ב-200
ניתוח דוגמה 3: מצב מוצא • YD = (1-0.25)Y = 0.75Y • C = 800 + 0.60.75Y • C = 800 + 0.45Y • דגש: מס הכנסה משפיע על הנטייה השולית לצרוך מתוך ההכנסה הלאומית. הוא אינו משפיע על C0 • AD = 1000 + 0.45Y • בשיווי-משקל: Y* ~1818 • המס הנגבה בשיווי-משקל: 454.5 • פער התוצר: YF – Y* ~ 1182 • פער דפלציוני: YF – AD(YF) = 650
ניתוח דוגמה 3: מצב חדש • C = 800 + 0.45Y • AD = 1200 + 0.45Y • בשיווי-משקל: Y* ~2181 • המס הנגבה בשיווי-משקל: 545.5 • גידול המס: ~90 • פער התוצר: YF – Y* ~ 819 • Y* = 363 • פער דפלציוני: YF – AD(YF) = 450
מקרה 3: גידול בהוצאות הממשלה במקביל לשימוש במס יחסי • הנחה: קיים פער דפלציוני • הנחה: גידול בהוצאות הממשלה, כאשר לא חל שינוי בשיעור המס היחסי • הנטייה השולית לצרוך מתוך ההכנסה הלאומית: MPC(1-t) • MPE = MPC(1-t) + MPI • המכפיל: K = 1/(1-MPE) • Y* = GK
דוגמה 4: גידול בהוצאות הממשלה במימון מס יחסי בהנחת תקציב מאוזן: G = T מצב מוצא • C = 800 + 0.6YD • G = T = 0 • I = 200 • תוצר תעסוקה מלאה: 3000 • הפירמות מחלקות את כל רווחיהן מצב חדש • הממשלה מטילה מס בשיעור 10% ומממנת באמצעותו את הוצאותיה.
ניתוח דוגמה 4: מצב חדש • T = G = 0.1Y • YD = 0.9Y • C = 800 + 0.54Y • AD = 1000 + 0.64Y • בשיווי-משקל: Y* = 2777 • T = G = 277 • דגש: התוצר בשיווי-משקל גדל בדיוק ב- G
מקרה 4: גידול בהוצאות הממשלה במימון מס יחסי בהנחת מדיניות תקציב מאוזן • G = T = t Y • YD = (1-t) Y • C = C0 + MPC (1-t) Y • C = - MPC t Y • AD = (1- MPC) t Y • בהנחה ש- MPI = 0 • בשיווי-משקל: Y* = AD0/(1-MPC)(1-t) • G = Y* = t AD0 / (1-MPC)(1-t) • מסקנה: בהינתן מדיניות של תקציב מאוזן ובהנחה כי MPI = 0, הרי שללא תלות בדרך המימון Y* = G
פער אינפלציוני • כל הדוגמאות (1-3) נערכו מתוך נקודת המוצא כ המשק נמצא באבטלה – קיים פער דפלציוני. • כאשר קיים פער אינפלציוני – המשק מייצר את רמת התוצר של תעסוקה מלאה. • מכאן שלא ייתכן גידול ברמת התוצר בשיווי-משקל. • הנחה: הממשלה מצליחה לממש את כל הביקוש שלה לצריכה – (על חשבון המגזרים האחרים).