1 / 30

Network Analysis

Network Analysis. 안용열 2004.05.02. Austin Powers: The spy who shagged me. Let’s make it legal. Robert Wagner. Wild Things. What Price Glory. Barry Norton. A Few Good Man. Monsieur Verdoux. Degree = 3. Links. A shortest path with path length=3 (Equivalent with 3 clicks in WWW).

prince
Download Presentation

Network Analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Network Analysis 안용열 2004.05.02

  2. Austin Powers: The spy who shagged me Let’s make it legal Robert Wagner Wild Things What Price Glory Barry Norton A Few Good Man Monsieur Verdoux

  3. Degree = 3 Links A shortest path with path length=3 (Equivalent with 3 clicks in WWW) Nodes Basic Concepts

  4. Basic Concepts : Degree Distribution Number of k-degree-Nodes is o Occurrence o k Degree

  5. Basic Concepts : Power Law Scale-free Network Exponential Network

  6. Small World • Milgram’s mail experiment • Small world project : http://smallworld.columbia.edu/ • WWW’s diameter ~ 20 clicks

  7. Strength of weak ties • Granovetter shows the strength of weak ties • Weak ties = Shortcut between heterogeneous communities

  8. High Clustering A라는 임의의 사람이 B라는 임의의 사람을 알고 있을 확률 내 친구 A가 내 친구 B를 알고 있을 확률 Network has many triangles!!

  9. Small-world network model • Networks are small world, and highly clustered. • Duncan Watts & Steven Strogatz made a model

  10. Small world network model • Shows Small-World behavior (Of course..) • Shows High clustering • But, does not shows Power-law degree distribution

  11. Scale-Free Network • Barabasi & Albert & Jeong shows that Internet has Power-law degree distribution • Power-Law degree distribution = Scale-free • Power-Law degree distribution means, “very large hubs exist”

  12. Network Centralities • Degree • Closeness • Betweenness(=load) • Range

  13. Degree • 얼마나 많은 링크를 가지고 있는가? • High degree centrality  ‘Hub’ • 보통 가장 중요한 centrality

  14. Closeness • 얼마나 다른 이들과 가까운가? • 1/ (모든 노드들의 쌍들의 거리 합)

  15. Betweenness • 얼마나 주요 길목에 위치하는가? • 모든 노드쌍들에 대해서 그 둘을 잇는 가장 짧은 길을 찾고, 그 길 위에 있는 노드들의 Betweenness값을 올려준다.

  16. j i 1 1 k • Betweenness Centrality (BC) [Freeman, 1977] bij(k)  (fraction in the number of the shortest paths between i and j that pass through k.) “How much is the k-th node influential to the communication between i and j” • Example: the BC at k contributed by the communication from i to j is • Accumulate over all ordered pairs:

  17. j i 1 1 k • Load lij(k)  (fraction of a unit packet sent from node i to node j along the shortest paths, that pass through k, assuming even division at branching points and accumulation at merging points.) Example: load at k due to a packet from i to j is • Accumulate over all ordered pairs:

  18. Range • 어떤 링크가 있을 때, 그 링크가 얼마나 ‘숏’컷인가? • 링크를 자른 뒤 그 링크가 연결하고 있던 두 노드사이의 거리를 잰다.

  19. In Computer Program.. : Network • Two column format 1 0 1 1 5 3 2 2 1 … 0 Means 2 5 3

  20. 2 3 4 5 6 7 0 1 In Computer Program.. : Network • Neighbor Array Degree is the number of neighbors

  21. In Computer Program..: Closeness, Betweenness • 이런 centrality들을 계산하기 위해서는 모든 node pair 에 대한 계산이 필요  네트워크의 노드개수가 n개라면, node pair의 수는 n(n-1)/2 ~ n^2 • 네트워크가 커질수록 계산이 대단히 힘들어짐. •  Breadth-first algorithm을 이용

  22. In Computer Program..: Closeness, Betweenness • 한 노드로부터 출발하여 다른 모든 노드로 가는 shortest path를 한 번에 구한 뒤에 각 path를 거꾸로 밟아오면서 Betweenness를 구한다. • 자세한 알고리즘: http://143.248.182.187/brandes.pdf

  23. Centrality의 이용 • Epidemics • Community identification • …..

  24. Epidemic spreading, idea spreading • Hub때문에 Scale-free network 위에서는 전염병이 사라지지 않음 • Hub만 감염시키면 삽시간에 전 네트워크로 어떤 idea나 정보들을 퍼뜨릴 수 있다.

  25. Immunization strategy • 임의의 한 명을 골라서 그 사람을 접종시키지 말고 그 사람의 친구에게 예방접종을 시키는 방법 • 사실상 링크를 임의로 선택하는 것이기 때문에 링크를 많이 가지고 있는 허브에게 예방접종이 될 확률이 높아진다.

  26. Community Identification • Every social networks have community structure. • Email network

  27. Community Identification • 대표적인 알고리즘: Girvan-Newman algorithm • Based on betweenness centrality

  28. Community Identification • Edge clustering coefficient를 이용한 알고리즘 • Voltage를 이용한 알고리즘 • Flow를 이용한 알고리즘 • …

  29. Tools • Pajek • Netminer

  30. 참고사이트 • http://stat.kaist.ac.kr : 실험실 홈페이지 • http://www.nd.edu/~networks/ : 노틀담 대학 network 홈페이지 • http://vlado.fmf.uni-lj.si/pub/networks/pajek/ : pajek 홈페이지 • http://www.netminer.com/ : netminer 홈페이지 • http://cafe.naver.com/sna.cafe

More Related