630 likes | 742 Views
Korpusarbete. Pragmatik VT04 Staffan Larsson. Varför använda korpus?. Hitta fenomen och mönster försöka förklara dessa med teori Testa och utveckla teorier T ex talakter: Är taxonomin av dialogdrag heltäckande? Kan den kodas på ett tillförlitligt sätt?
E N D
Korpusarbete Pragmatik VT04 Staffan Larsson
Varför använda korpus? • Hitta fenomen och mönster • försöka förklara dessa med teori • Testa och utveckla teorier • T ex talakter: Är taxonomin av dialogdrag heltäckande? Kan den kodas på ett tillförlitligt sätt? • Stämmer kodningen med vad teorin förutsäger? • Hitta korrelationer mellan fenomen (t ex talakt-intonation) • Dialogsystemutveckling • Givet en domän, undersöka vilken typ av dialog som förekommer • Få fram en rimlig målsättning för systemet baserat på riktiga data
Purpose of dialogue annotation (Erbach) • Linguistic description and analysis on different levels • Resources for conversation analysis (sociological, socio-linguistic research) • Resources for system engineering (acoustic models, language models) • Resources for application development (Prompts, recognition grammars, dialogue design) • Resources for system evaluation
The use of corpora in dialogue systems development (Jönsson) • Initial design • System development • Fine tuning • Sub-task evaluation • Theoretical development • Evaluation
The sound of dialogue • A820101 Travel Agency Dialogue I (Huppdialogen) • A travel agency customer wants to book a flight to Paris.
The look of dialogue (GTS standard) $P: hup $J: [1 a:0 ]1 $P: [1 ö:m ]1 // flyg ti <1 paris >1 @ <1 name >1 $J: mm <2 >2 <3 / ska [2 du ha:0 ]2 en0 returbiljett >3 @ <2 event: P opens her bag >2 @ <3 event: people are talking in the background >3 $P: [2 ö:1 ]2 $P: va1 sa0 du $J: ska du ha0 en0 tur å0 retur $P: ja0 <4 / >4 ö1 @ <4 inhalation sound (burping): J >4 $J: // vicken månad ska du åka $P: / <5 <6 >5 >6 ja:0 typ den: ä:1 tredje fjärde <7 <8 april >7 / [3 nån]3 gång där >8 <9 / >9 så0 billit [4 som möjlit ]4 @ <5 sigh >5 @ <6 event: P is looking through some papers >6 @ <7 name >7 @ <8 puffing >8 @ <9 inhalation sound: J >9 $J: [3 mm ]3 $J: <10 [4 ja0 just ]4 de0 jo / de0 ha1 ja1 aldri hört förr / de0 billiaste>10 vi0 har <11 e:0 >11 <12 air france >12 ettusenåttahundratie / [5 plus ]5 flygplatsskatter så0 du hamnar på: <13 >13 a0 du kan få0 exakt <14vänta0 ska du se0 här vi0 gö1 såhär / ö:1 // >14 @ <10 giggling: P >10 @ <11 inhalation sound: P >11 @ <12 name >12 @ <13 inhalation sound >13 @ <14 event: J is typing on a computer keyboard >14 $P: [5 a:0 ]5
The look of dialogue (CLAN standard) P: hu:p (0.3) ?: ((br)a[:( P: [ö:m (1.4) P: flyg ti pari:s J: mm: (0.7) ((P opens her bag)) P: °(ö[:)° J: [ö:: >en returbiljett< (0.8) P: va sa du? J: ska du ha en tur å retur. P: ja, J: ·h[h P: [ö:h (2.3) J: viken månad ska du åka i (3.0) ((P is looking through some papers)) P: ja: typ den: (0.7) tredje fjärde april h[h °nångång (där° J: [ m:m J: ·hh P: så billit som mö[jlit *hhh* J: [ja just de jo (.) de ha ja aldri hört förr (.) P: (m)[(nä) J: [de billiaste vi har [e: >air fra:nce< ettusenåttahundratie. P: [hh P: [ a: J: [ plus flygplatsskatter så ru hamnar på: ·h (.) a du kan få exakt ((vänta ska ru °se här vi gö såhär° ((J is typing on a computer keyboard)) (0.5)
no comments $P: hup $J: [1 a:0 ]1 $P: [1 ö:m ]1 // flyg ti paris $J: mm / ska [2 du ha:0 ]2 en0 returbiljett $P: [2 ö:1 ]2 $P: va1 sa0 du $J: ska du ha0 en0 tur å0 retur $P: ja0 / 4 ö1 $J: // vicken månad ska du åka $P: / ja:0 typ den: ä:1 tredje fjärde april / [3 nån ]3 gång där / så0 billit [4 som möjlit ]4 $J: [3 mm ]3 $J: [4 ja0 just ]4 de0 jo / de0 ha1 ja1 aldri hört förr / de0 billiaste vi0 har e:0 air france ettusenåttahundratie / [5 plus ]5 flygplatsskatter så0 du hamnar på:a0 du kan få0 exakt vänta0 ska du se0 här vi0 gö1 såhär / ö:1 // $P: [5 a:0 ]5
no pauses and indices $P: hup $J: [ a ] $P: [ öm... ] flyg till paris $J: mm... ska [ du ha ] en returbiljett $P: [ ö ] $P: vad sa du $J: ska du ha en tur och retur $P: ja... ö $J: vilken månad ska du åka $P: ja typ den ä tredje fjärde april... [ nån gång ] där... så billigt som [ möjligt ] $J: [ mm ] $J: [ ja just ] det jo... det har jag aldrig hört förr... de billigaste vi har är air france ettusenåttahundratie... [ plus ] flygplatsskatter så du hamnar på ja du kan få exakt vänta ska du se här vi gör såhär... ö... $P: [ a ]
Typer av korpusarbete • Datainsamling & transkribering • Naturlig dialog • Wizard of Oz • Bearbetning • Destillering • Kodning • Talakter • Dialogspel • Informationstillstånd • NP-referens, presupposition, implikatur...
Datainsamling • Naturlig M-M-dialog (människa-människa) • Fejkad M-D-dialog (människa-dator) • ”Wizard of Oz” • M-D-dialog med dialogsystem • För vidareutveckling och felsökning
Types of dialogue corpora • Human-Human • Call Home (spontaneous telephone speech) • Map Task (direction giving on a map) • Switchboard (task-oriented human-human dialogues) • Childes (child language dialogues) • Verbmobil (appointment scheduling dialogues) • TRAINS (task-oriented dialogues in railroad freight domain) • Göteborg Spoken Language Corpus (multiple activities) • ATIS (flight reservation dialogues) • Human-Machine • Danish Dialogue System (57 dialogues, domestic flight reservation) • Philips (13500 dialogues, train timetable information) • Sundial (100 Wizard of Oz dialogues, British flight information)
Collecting corpora (Slide borrowed from Arne Jönsson) • Natural dialogues + Natural user tasks and needs + Easy to set up - Not human-computer dialogues • Wizard of Oz-dialogues
Wizard of Oz-simulations(Slide borrowed from Arne Jönsson) Subject Wizard
Collecting corpora(Slide borrowed from Arne Jönsson) • Natural dialogues + Natural user tasks and needs + Easy to set up - Not human-computer dialogues • Wizard of Oz-dialogues - Artificial task - Resource consuming + Computer-Human interaction
Wizard problems (Slide borrowed from Arne Jönsson) • Consistency • Within dialogues • Between dialogues • Computer vs human • Humans flexible — computers rigid • Humans write slow— computers are fast • Computers never do small mistakes— humans always make small mistakes
Distilled dialogues (Slide borrowed from Arne Jönsson) • Post-processed human dialogues • Provides insights on natural interaction • Contains less human interaction phenomena • Requires an outline of the dialogue systems’ overall behaviour, capabilities and modalities • Requires knowledge on Computer-Human interaction
Distilling guidelines(Slide borrowed from Arne Jönsson) • When to change • How to change • Three types of dialogue contributors • ‘System’ utterances • User utterances • Other
Modifying ‘system’ utterances(Slide borrowed from Arne Jönsson) Depends on the dialogue system • The ‘system’ provides as much relevant information as possible • ‘System’ utterances are made more computer-like • The ‘system’ never repeats information unless explicitly asked to • The ‘system’ does not ask for information it has already achieved
Removing ‘system’ utterances(Slide borrowed from Arne Jönsson) • ‘System’ utterances no longer valid are removed • Sequences of non-computer utterances are removed
Modifying user utterances(Slide borrowed from Arne Jönsson) • Change user utterances as little as possible
Removing user utterances(Slide borrowed from Arne Jönsson) • Utterances that are no longer valid are removed • Utterances discussing issues outside the scope of the application are removed
Adding utterances(Slide borrowed from Arne Jönsson) • User and ‘system’ utterances can be added in order to have the dialogue continue U: Yees hi Anna Nilsson is my name and I would like to take the bus from Ryd center to Resecentrum in Linköping S: mm When do you want to leave?
Natural dialogue(Slide borrowed from Arne Jönsson) U4: yes I wonder if you have any mm buses or (.) like express buses leaving from Linköping to Vadstena (.) on Sunday S5: no the bus does not run on sundays U6: how can you (.) can you take the train and then change some way (.) because (.) to Mjölby 'n' so S7: that you can do too yes U8: how (.) do you have any such suggestions S9: yes let's see (4s) a moment (15s) now let us see here (.) was it on the sunday you should travel U10: yes right afternoon preferably S11: afternoon preferable (.) you have train from Linköping fourteen twenty nine U12: mm S13: and then you will change from Mjölby station six hundred sixty U14: sixhundred sixty S15: fifteen and ten
Distilling(Slide borrowed from Arne Jönsson) U4: yes I wonder if you have any mm buses or (.) like express buses leaving from Linköping to Vadstena (.) on Sunday S5: no the bus does not run on sundays U6: how can you (.) can you take the train and then change some way (.) because (.) to Mjölby 'n' so S7: that you can do too yes U8: how (.) do you have any such suggestions S9: yes let's see (4s) a moment (15s) now let us see here (.) was it on the sunday you should travel U10: yesrightafternoon preferably S11: afternoon preferable (.) you have train from Linköping fourteen twenty nine U12: mm S13: and then you will change from Mjölby station six hundred sixty U14: sixhundred sixty S15: fifteen and ten
Distilled dialogue (Slide borrowed from Arne Jönsson) U4: yes I wonder if you have any buses or (.) like express buses going from Linköping to Vadstena (.) on Sunday S5: no the bus does not run on sundays U6: how can you (.) can you take the train and then change some way (.) because (.) to Mjölby and so S7: when do you want to leave? U8: (..) afternoon preferably S9: you can take the train from Linköping fourteen and twenty nine and then you will change at Mjölby station to bus six hundred sixty at fifteen and ten
V8201011 again $P: hup $J: a $P: öm...flyg till paris $J: mm... ska [ du ha ] en returbiljett $P: [ ö ] $P: vad sa du $J: ska du ha en tur och retur $P: ja... ö... $J: vilken månad ska du åka $P: ja typ den ä tredje fjärde april... [ nån gång ] där... så billigt som [ möjligt ] $J: [ mm ] $J: [ ja just ] det jo... det har jag aldrig hört förr... de billigaste vi har är air france ettusenåttahundratie... [ plus ] flygplatsskatter så du hamnar på ja du kan få exakt vänta ska du se här vi gör såhär... ö... $P: [ a ]
Slightly distilled A8201011 $U: hup $S: välkommen till resebyrån / vad kan jag stå till tjänst med $U: öm...flyg till paris $S: mm... ska [ du ha ] en returbiljett $U: [ ö ] $U: vad sa du $S: ska du ha en tur och retur $U: ja... ö... $S: vilken månad ska du åka $U: ja typ den ä tredje fjärde april...[ nån gång ] där så billit [ som möjlit ] $S: [ mm ] $S: [ ja just ] de.. det billigaste vi har är air france ettusenåttahundratie plus flygplatsskatter... för denna biljett krävs internationellt studentkort / har du det
Very distilled version of A821011 $S Välkommen till resebyrån $U flyg till paris $S varifrån vill du åka? $U köpenhamn $S vill du ha en returbiljett? $U va sa du? $S vill du ha en returbiljett? $U ja $S vilken månad vill du resa? $U tredje fjärde april, så billigt som möjligt $S har du internationellt studentkort? $U nä $S då blir det det 1810 kronor.
What is changed? (Slide borrowed from Arne Jönsson) • Removed • Utterances containing already provided information • Added • Utterances explicitly asking for information • Modified • Hesitations, pauses
Using distilled dialogues (Slide borrowed from Arne Jönsson) • System development • Fine tuning • Task analysis • Analysis of sub-dialogues • Evaluation • Not an accurate model of the global dialogue structure • Education
Development of dialogue systems requires valid corpus data • Natural dialogues do not capture human-computer interaction • Wizard of Oz-dialogues have artificial tasks • Distilled dialogues fill the gap between natural dialogues and Wizard of Oz-dialogues
Levels of Annotation(slide borrowed from Gregor Erbach) • phonetic / phonological / orthographic • prosody • morphology / syntax / semantics • co-reference • dialogue acts • turn-taking • cross-level • acoustic (noise, phone line characteristics) • communication problems • speech recognition results (human-machine dialogues)
Some coding schemas for speech acts/dialogue moves • DAMSL • LINLIN: Linköping, Ahrenberg et al, 1995 • HCRC: Developed for the Map Task Corpus, Andersson et al 1991 • DAMSL: By Discourse Resource Initiative as a standardized coding scheme, 1991 • SWBD-DAMSL: Modified DAMSL by Stolcke et al 2000 • GBG: Communicative Acts by Allwood 2000
Properties for dialogue act coding schemes (slide borrowed from Leif Grönqvist) • How general is it? • Is it powerful enough for natural dialogue? • Does the scheme handle different modalities? • Are the definitions precise enough to make the scheme useful in dialogue systems? • Multi functional codings • Mutual exclusive categories • Discontinuous codings • Relational codings • Hierarchical coding values • Multi-layer scheme
Map Task Corpus (slide borrowed from Gregor Erbach) • Map Task is a cooperative task involving two participants who sit opposite one another and each has a map which the other cannot see • One speaker (Instruction Giver) has a route marked on her map; the other speaker (Instruction Follower) has no route • Speakers are told that the goal is to reproduce the Instruction Giver's route on the Instruction Follower's map • Speakers know that the maps are not identical • 128 digitally recorded unscripted dialogues and 64 citation form readings of lists of landmark names • Transcriptions and a wide range of annotations are available as XML documents • Separation of corpus and annotation
Dialogue Moves (MapTask)(slide borrowed from Gregor Erbach) • Six initiating moves • instruct - commands the partner to carry out an action • explain - states information which has not been elicited by the partner • check - requests the partner to confirm information • align - checks the attention or agreement of the partner • query-yn - asks a question which takes a "yes" or "no" answer • query-w - any query which is not covered by the other categories • One pre-initiating move • ready - a move which occurs after the close of a dialogue game and prepare the conversation for a new game to be initiated
(slide borrowed from Gregor Erbach) • Five response moves: • acknowledge - a verbal response which minimally shows that the speaker has heard the move to which it responds • reply-y - any reply to any query with a yes-no surface form which means "yes", however that is expressed • reply-n - a reply to a a query with a yes/no surface form which means "no" • reply-w - any reply to any type of query which doesn't simply mean "yes" or "no" • clarify - a repetition of information which the speaker has already stated, often in response to a check move
Sample MapTask annotation *g Right, em, go to your right towards the carpenter’s house [INSTRUCT] *f Alright || well I’ll need to go below. I’ve got a blacksmith marked [ACKNOWLEDGE, EXPLAIN] g* Right, well you do that [ACKNOWLEDGE] f* Do you want it to go below the carpenter? [QUERY-YN] g* No, I want you to go up the left hand side of it towards... [REPLY-N] ... *f Right [ACKNOWLEDGE] Explain- game Query- game Instruct game
Speech act coding: DAMSL • Dialogue Act Markup in Several Layers • draft, by DRI (Discourse Research Initiative) • Task oriented dialogue, two participants • agents collaborate to solve some problem • Concepts: • turn: units in which a single speaker has temporary control of the dialogue and speaks/writes for some period of time • utterance: unit whose definition is based on analysis of speaker intention (speech act) • segment: a continuous group of utterances
Examples from TRAINS corpus • DPs collaborate in planning how to ship oranges with trains
More complex example • a multi-utterance segment with speech act tag
Multiple layers: • each utterance (or segment) is annotated along several independent (”orthogonal”) dimensions • Uncertainty modifier (?) • If coder is unsure • Utterance tags • Communicative Status • Information Level • Forward Looking Function • Backward Looking Function
Communicative-status • Uninterpretable • The utterance unit is not comprehensible. • Abandoned • the import of the dialog would not change if these utterance units were removed • Self-talk • The utterance unit consists of one speaker talking to him or herself.
Information-Level • Task • ”Doing the task” • Task-management • ”Talking about the task” • Communication-management • ”Maintaining the communication” • Other-level
Forward Looking Function (FLF) • This dimension characterizes what effect an utterance has on the subsequent dialogue and interaction. • For instance, as the result of an utterance, is the speaker now committed to certain beliefs, or to performing certain future actions? • Annotators are allowed to look ahead in the dialog to determine the effect an utterance has on the dialog • Often, there are many different effects simultaneously achieved by an utterance. • To allow for this, the coding in this dimension allows eight different aspects of every utterance to be coded
Intuitive test : whether the utterance could be followed by ``That's not true''. • ”Let's take the train from Dansville'' • presupposes that there is a train at Dansville, • but this utterance is not considered a statement. • You couldn't coherently reply to this suggestion with ``That's not true''. • Statement • Assert • Reassert • Other-statement
Influencing-addressee-future-action • Open-option (offer) • ”how about going through Corning” • Action-directive (request) • ”Move the train to Dansville” • ”Please speak more slowly” • Rough test: whether the hearer could coherently respond with ``I can't do that'’
Not responding to... • Action-directive would be considered to be rude • Open-option need not have any negative effect since no obligation (beyond normal conversational constraints) is placed on the listener • For example, the first utterance below is an Open-option (abbreviated here as OO) because B does not need to address it and can coherently answer with utt2. utt1 OO A: There is an engine in Elmira utt2 Action-dir B: Let's take the engine from Bath. • On the other hand, in the following example utt1 is an Action-directive and B should explicitly refuse the suggestion if it is not adopted. utt1 Action-dir A: Let's use the engine in Elmira. utt2 Reject(utt1)B: No utt3 Action-dir B: Let's take the engine from Bath.