1 / 31

Moving from Safety-I to Safety-II

Symposium on HF &E in Health Care 12 March 2013. Moving from Safety-I to Safety-II. Robert L Wears, MD, MS, PhD University of Florida Imperial College London. motivation. general agreement that we are not making progress on safety as fast as we would like

psyche
Download Presentation

Moving from Safety-I to Safety-II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Symposium on HF &E in Health Care 12 March 2013 Moving from Safety-I to Safety-II Robert L Wears, MD, MS, PhD University of Florida Imperial College London

  2. motivation • general agreement that we are not making progress on safety as fast as we would like • we have not been ‘Protestant enough’ • more rigour (eg, EBM) • greater accountability

  3. motivation • general agreement that we are not making progress on safety as fast as we would like • wrong mental model of safety • “… enduring Enlightenment projects • “… rationality can create a better, more controllable world • “… taken for granted by safety researchers b/ it appears so ordinary, self-evident and commonsensical.”* *Dekker 2012

  4. “A scientific paradigm suppresses the perception of data inconsistent with the paradigm, making it hard to perceive anomalies that might lead to scientific revolution.”

  5. effect of mental models • 11 year lag in discovery of Antarctic ozone hole Meadows, Meadows, Randar 1992

  6. patient safety orthodoxy technocratic, instrumental, ‘measure-and-manage’ approach myopic – failing to question underlying nature of problems overly simplistic – transferring sol’ns from other sectors negligent of knock-on effects of change “glosses over the complexities of health care organisation and delivery”

  7. view from safety-I • accidents come from erratic acts by people • (variability, mistakes, errors, violations) • study, count accidents to understand safety • (tend to look backwards) • focus on components • safety is acquired by constraining workers via: • standardisation, guidelines, procedures, rules, interlocks, checklists, barriers • Taylor, Deming, Shewhart • Toyota

  8. assumptions in safety-I • our systems are well-designed and well-understood • procedures correct and complete • systems are basically safe, well-protected • reliability = predictable, invariant • variation is the enemy • safety is an attribute • (something a system has) • conditions are well-anticipated, well-specified

  9. view from safety-II • accidents are prevented by people adapting to conditions • study normal work to understand safety • (tends to look forward) • focus on inter-relations • aim is to manage, not eliminate, the unexpected • safety is enacted by enabling workers via: • making hazards, constraints, goal conflicts visible • enhancing repertoire of responses • Rasmussen, Woods, Hollnagel • Three Mile Island, Tenerife

  10. assumptions in safety-II • our designs are incomplete, procedures out-dated • our systems are poorly understood • systems are basically unsafe • reliability = responsiveness • variation is necessary • safety is an activity • (something a system does) • possible failure modes have not been anticipated • ‘continuing expectation of surprise’

  11. safety-II healthcare STS intractable, underspecified, variable demands resources (time, people, material, information) limited, uncertain workers adjust to meet conditions creating variability adjustments always approximate (b/ resources limited) “Knowledge and error flow from the same mental source; only success can tell one from another.” Ernst Mach, 1905 approximate adjustments usually reach goals, make things go safely approximate adjustments sometimes fail, or make things go wrong

  12. safety-I vs safety-II summary defined by its opposite - failure well designed & maintained, procedures correct & complete people (ought to) behave as expected & trained accidents come from variability in above therefore safety comes from limiting & constraining operators via standardization, procedures, rules, interlocks, barriers critical inquiry defined by its goal - success poorly understood, incomplete, underspecified people (ought to) adjust behaviour & interpret procedures accidents come from incomplete adaptation therefore safety comes from supporting operators via making boundaries, hazards, goal conflicts visible, enhancing repertoire of responses appreciative inquiry

  13. philosophical bases safety-I safety-II non-linear, non-proportional, intractable behaviour explained by emergence constructivist, interpretivist cause-effect multiple, reciprocal influence-able equifinality, multifinality values practice, tacit wisdom ‘wicked problems’ mētis, phronesis linear, proportional, tractable behaviour explained by reduction positivist, Taylorist cause-effect simple, oneway controllable ‘the one best way’ values declarative, technical knowledge complicated problems techne, episteme

  14. why safety-II? “The real trouble with this world of ours is not that it is an unreasonable world, nor even that it is a reasonable one. The commonest kind of trouble is that it is nearly reasonable, but not quite. Life is not an illogicality; yet it is a trap for logicians. It looks just a little more mathematical and regular than it is; its exactitude is obvious, but its inexactitude is hidden; its wildness lies in wait.“ G K Chesterton, 1909

  15. why safety-II?

  16. why safety-II? • better fit with modern theories of accidents 1940 1960 1980 2000 simple, linear, chain of events complicated, interdependent complex, nonlinear, coupling, resonance, emergence

  17. why safety-II? • resilience, ‘margin for maneuver’, buffers, tradeoffs all • “hidden in the interstices of complex work” • focus on how ordinary work goes right less likely to inadvertently damage these hidden resources

  18. empirical support direct observations of CV surgery surgeons w/ best results had just as many untoward events as those w/ worst but they had better means of detection greater repertoire of responses de Leval 2000

  19. fundamental ideas not new • Ernst Mach (1903) • Charles Perrow (1984) • Jens Rasmussen (1990, 1997) • Gary Klein (1989ff) • Gene Rochlin (1987, 1999) • Paul Schulman (1993, 2004) • Amalberti (2001) • Hollnagelet al (2006ff) • Berwick (2003)

  20. from stdonald Berwick, 2003

  21. what makes safety-I persist? not despite the fact that it’s wrong, but precisely because it is wrong, wrong in particularly useful ways ‘the nurse failed to notice …’ failure comes from aberrant people / devices, so remove, control them refitting, reorganising expensive, so re-train instead Enlightenment ‘program of technical rationality’ simple explanations illusion of control, ontological security removes managers, organisations from line of fire fits positivist, biomedical model

  22. why HFE is a good fit for safety-II • multiple philosophies of science admissible • expertise in unpacking the mundane • judicious valuing of practice • ‘requisite variety’ of views, tools • work as imagined vswork as done

  23. perceive the invisible • Insp G: Is there any point to which you would wish to draw my attention? • SH: To the curious incident of the dog in the night-time. • Insp G: The dog did nothing in the night-time. • SH: That was the curious incident … Conan Doyle, 1893

  24. what is needed to move forward? • requisite variety • mental models, theories, skills, people • critical mass • sustained co-presence

  25. contact information • Robert L Wears, MD, MS, PhD • wears@ufl.edu • r.wears@imperial.ac.uk • +1 904 244 4405

  26. empirical support NSQIPS study hospitals w/ lowest mortality had just as many complications as those w/ worst but they had earlier recognition better responses Ghaferi 2009

  27. “Any argument for the safety of a design that relies solely on pointing to what has worked successfully in the past is logically flawed.” • John Roebling

  28. sorting out the two views • resilience vs orthodox approach • exploration vs exploitation • prescriptive vs adaptive guidance • homo- vs hetero-geneous processes • centralized vs distributed control • organic, evolutionary vs engineered, managerial

  29. when HF and healthcare meet

More Related