1 / 22

Energie Slunce

Energie Slunce. Přímá (i nepřímá) výroba elektrické energie. Možnosti využití sluneční energie. Jak lze vyrobit elektrickou energii ze Slunce ? a) přímo * fotovoltaické články b) nepřímo * ohřev média a následná výroba elektrické energie Jak lze vyrobit tepelnou energii ze Slunce ?

purity
Download Presentation

Energie Slunce

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Energie Slunce Přímá (i nepřímá) výroba elektrické energie

  2. Možnosti využití sluneční energie Jak lze vyrobit elektrickou energii ze Slunce ? a) přímo * fotovoltaické články b) nepřímo * ohřev média a následná výroba elektrické energie Jak lze vyrobit tepelnou energii ze Slunce ? * solární kolektory Míra využití sluneční energie je dána: * intenzitou slunečního svitu * technologickými možnostmi * všestranným využitím získané energie * ekonomickou návratností * možností investic a mírou zisku

  3. Mapa slunečního svituv ČR V ČR za rok 1kWP 1MWh Solární záření v České republice Zdroj: Atlas podnebí Česka Světová mapa slunečního svitu – matematický model

  4. Mapa slunečního svituv Evropě

  5. Výroba OZE v ČR - zdroj: Český regulační úřad

  6. Výkon fotovoltaických elektráren v ČRZdroj: ERU k 1. 1. 2013 - počet: 21 925 - výkon: 2 072MW

  7. Největší fotovoltaické elektrárny v ČRzdroj: ERU

  8. Nepřímá výroba elektrické energie * V ohnisku (pec) je teplota až 3000oC * Voda se mění v páru a pohání turbínu (na obr. je varianta s olejem, nutný výměník * Zrcadla (heliostaty) jsou pohyblivá a natáčí se za sluncem

  9. Nepřímá výroba elektrické energie * Je tvořena řadami naklápěcích slunečních kolektorů, sluneční záření je směřováno na trubku * V trubce proudí teplonosné médium * V Kalifornii pracuje elektrárna s výkonem 30 MW

  10. Nepřímá výroba elektrické energie

  11. Princip fotovoltaického článku * po dopadu fotonu (musí mít dostatečnou energii) na polovodič typu N se uvolní z mřížky elektron, po kterém zůstane kladná "díra" * volný elektron nemůže vlivem přechodu PN přejít do vrstvy P * elektrony uvolněné ve vrstvě P mohou volně přecházet do vrstvy N * tím se vytvoří rozdíl potenciálů mezi spodní a vrchní vrstvou  na článku naměříme napětí asi 0,5 V * po připojení zátěže začne procházet proud * z 1m2 lze získat stejnosměrný výkon přibližně 150W * pro praktické využití je třeba sério-paralelní zapojení článků

  12. Princip fotovoltaického článku

  13. Materiály pro fotovoltaické články 1. Generace - základem jsou krystalické křemíkové desky Křemíkteoretická maximální účinnost 31 % multikrystalický * účinnost (11-14) % * výhody nižší cena difúzní světlo * energetická návratnost 2,2 let monokrystalický * reálná účinnost (12-16) % * energetická návratnost 2,7 let Obě technologie jsou dnes zcela rovnocenné. V současné době nejvíce využívaná technologie (zhruba 90%)

  14. 2. Generace Hlavním aspektem je úspora křemíku při plánovaném růstu výroby článků Tenkovrstvé technologie Aktivní polovodičová vrstva se nanáší na podložku (sklo nebo plast) a je 100 – 1000 tenčí. a) na bázi křemíku * polykrystalická technologie, účinnost (okolo 10%) * amorfní křemík nanesený na skle, tloušťka 0,5m, účinnost (6 - 7)% * moduly HIT – dvě vrstvy amorfního křemíku mezi kterými je b) bez křemíku * CIS moduly – měď, indium, galium, selen, účinnost (11 - 12)% * Cd-Te ( kadmium-telurid) moduly, účinnost (9 - 11)% Obecné vlastnosti tenkovrstvé technologie: * lehkost a snadná manipulace * citlivost na denní světlo i při nepřímém slunečním svitu * menší citlivost na vysoké teploty * nižší výrobní náklady a rychlejší zhodnocení investice * předpoklad zvyšování účinnosti Použití - fólie na ohebný podklad, fasády domů, vrstvy na skle, …

  15. Tenkovrstvé technologie Jedna z možných realizací technologie – solární články na fólii a papíře. 1. nastříkání fotocitlivých vrstev ve vakuové komoře na fólii (papír) - USA 2. tisk pomocí speciálních barev na list běžný papíru (technologie 3PV) - Německo Vlastnosti – současná účinnost 1,3%, cílová hodnota okolo 5% Výhoda – běžný tisk  nízká cena

  16. Další generace a perspektivy vývoje solárních panelů Vícevrstvé solární články (dvoj-, trojvrstvé články) * ultratenké materiály s různou citlivostí na sluneční spektrum * některé fotony „uvíznou“ ve vrchní vrstvě, jiné projdou hlouběji * teoretická účinnost je až 72 % * problémy s krystalickou mřížkou, maximální dosažená účinnost okolo 30 % * jednotlivé vrstvy by měly být zdrojem stejného proudu * výsledné napětí je dáno součtem jednotlivých napětí vrstev. V současné době existuje několik dalších technologií, které mají za úkol zvýšit účinnost, zvýšit výkon. Většina nových technologií je ve stádiu vývoje. Stávajícím problémem je i vysoká cena a nízká účinnost

  17. Vícevrstvé solární články (trojvrstvé články)

  18. Vývoj účinnosti

  19. Nové články - perovskit * Jedná se o skupiny látek, sloučenin halogenů (chlór, jód nebo bróm), které jsou naneseny na základní vodivé desce (sklo) * na podzim 2013 se podařilo dosáhnout účinnosti okolo 15% v laboratorních podmínkách * do budoucna se předpokládá i stejná účinnost v normálních podmínkách * mohou být i průhledné * cena nových článků by měla být výrazně nižší než u stávajících křemíkových modulů * uvažuje se i "tisku" perovskitu na současné křemíkové články, což by vedlo ke zvýšení účinnosti

  20. Popište jednotlivé solární články (momokrystalický a polykrystalický křemík, organický solární článek.)

  21. Perspektivy vývoje solárních panelů a ceny Hlavní perspektivy vývoje: * snižování tloušťky destiček na (150-200) m  snižování spotřeby materiálu a potřebné energie na výrobu * výrazný pokles ceny křemíku, za 5 let na 10% původní částky * pokles ceny modulů na 1,5 euro/WP.

  22. Materiály Data Český regulační úřad Světová mapa slunečního svitu Internetový odkaz Mapa svitu v ČR Atlas Česka Wikipedie Otevřená encyklopedie Simulace http://www.leifiphysik.de Petr Mastný Obnovitelné zdroje energie Petr Novotný Fotovoltaika, prezentace TU Liberec

More Related