10 likes | 109 Views
T. T. T. T. T. T. T. T. gene. regulator. (1) 2 + Hin. (-1) 2. (1) 2. Single pancake flipping. NheI. NheI. Tet. RBS. device. EX. SP. -1,2 -2,-1 in 2 flips!. T. T. pSB1A7. rep(pMB1). ampR.
E N D
T T T T T T T T gene regulator (1) 2 + Hin (-1) 2 (1) 2 Single pancake flipping NheI NheI Tet RBS device EX SP -1,2 -2,-1 in 2 flips! T T pSB1A7 rep(pMB1) ampR 1Biology and 2Mathematics Departments, Davidson College, Davidson, North Carolina; 3Biology Department, Hampton University, Hampton, VA E.HOP: A Bacterial Computer to Solve the Pancake ProblemW. Lance Harden2, Sabriya Rosemond3, Samantha Simpson1, Erin Zwack1Mentors: A. Malcolm Campbell1, Karmella Haynes1, and Laurie J. Heyer2 1. The Burnt Pancake Problem 4. Two Pancake Constructs (1,2) (-2,-1) (1,-2) (2,-1) Unsorted Pancakes Problem Solved (-1,2) (-2,1) Can E. coli be programmed to compute solutions? (-1,-2) (2,1) 2. Mathematical Modeling 5. Results *Solution is (1, 2) or (-2, -1) ( 1, 2) (-2, -1) ( 1, -2) (-1, 2) (-2, 1) ( 2, -1) 8 different stacks of two pancakes Assume all possible flips are equally likely Need to build one construct from each “family” (-1, -2) ( 2, 1) Repress pBad-Tet Activate pLac-Hin Screen forOrientation 3. Biological Pancakes 6. Conclusions PRACTICAL Proof-of-concept for bacterial computers Data storage n units gives 2n(n!) combinations BASIC BIOLOGY RESEARCH Improved transgenes in vivo Evolutionary insights Plasmid #1: Two pancakes (Amp vector) Tet RBS hixC hixC hixC pBad Plasmid #2: AraC/Hin generator (Kan vector) AraC PC Hin LVA RBS pSB1K3 pLac Thanks to Missouri Western State University, HHMI, Davidson College, James G. Martin Genomics Program, and MIT