150 likes | 351 Views
27.3 位似( 2 ). 复习回顾. 1. 什么叫位似图形 ?. 如果两个图形不仅相似 , 而且对应顶点的连线相交于一点 , 像这样的两个图形叫做位似图形 , 这个点叫做位似中心 , 这时的相似比又称为位似比. 2. 位似图形的性质. 位似图形上的任意一对对应点到位似中心的距离之比等于位似比. 3. 利用位似可以把一个图形放大或缩小. 复习回顾. 如何把三角形 ABC 放大为原来的 2 倍 ?. E. B. F. C. O. A. D. B. D. C. O. F. A. E. 位似中心.
E N D
复习回顾 1.什么叫位似图形? 如果两个图形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形, 这个点叫做位似中心, 这时的相似比又称为位似比. 2.位似图形的性质 位似图形上的任意一对对应点到位似中心的距离之比等于位似比 3.利用位似可以把一个图形放大或缩小
复习回顾 如何把三角形ABC放大为原来的2倍? E B F C O A D B D C O F A E 位似中心 对应点连线都交于____________ 平行或在一条直线上 对应线段_________________________
探索1: 在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为3:1,把线段AB缩小. A′(2,1),B′(2,0) y A A' x o B B' 观察对应点之间的坐标的变化,你有什么发现?
在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为3:1,把线段AB缩小.在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为3:1,把线段AB缩小. A′(2,1),B′(2,0) A〞(-2,-1),B(-2,0) y 观察对应点之间的坐标的变化,你有什么发现? A A' x B〞 o B B' A〞 在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
在平面直角坐标系中, △ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为2. 放大后对应点的坐标分别是多少? A′( 4 ,6 ), B′( 4 ,2 ), C′( 12 ,4 ) y A' A C' B' C x o B
在平面直角坐标系中, △ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为2,将△ABC放大. 还有其他办法吗? 放大后对应点的坐标分别是多少? A′( -4 ,-6 ), B′( -4 ,-2 ), C′( -12 ,-4 ) y A C B o x
例.如图,请以坐标原点O为位似中心,作平行四边形ABCD的位似图形,并把它的边长放大2倍. Y 12 分析:根据位似图形上任意一对对应点到位似中心的距离之比等于位似比,我们只要连结位似中心O和的各顶点,并把线段延长(或反向延长)到原来的2倍,就得到所求作图形的各个顶点 10 G F 8 6 A D 4 2 E′ C′ E X C B -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 -2 -4 -6 G′ F′ -8 -10 -12
想一想: 1.四边形GCEF与四边形G′C′E′F′具有怎样的对称性? 2.怎样运用像与原像对应点的坐标关系, 画出以原点为位似中心的位似图形? 以坐标原点为位似中心的位似变换有一下性质: 若原图形上点的坐标为(x,y),像与原图形的位似比为k,则像上的对应点的坐标为(kx,ky)或(―kx,―ky).
例题.在平面直角坐标系中, 四边形ABCD的四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O为位似中心,相似比为1/2的位似图形. A D B C y 你还有其他办法吗?试试看. A′ D′ B′ x o C′ A′( -3,3 ), B′( -4,1 ), C′( -2,0 ), D′( -1,2 )
练一练: 1.如图表示△ABC把它缩小后得到的△COD,求它们的相似比 y A C x B o D
练一练: 2.如图△ABC的三个顶点坐标分别为A(2,-2),B(4,-5),C(5,-2),以原点O为位似中心,将这个三角形放大为原来的2倍. y o x A C B
练一练: 3.如图,写出矩形wxyz各点的坐标,如果矩形STUV相似于wxyz,点S 的坐标为(2,7),按照下列相似比,分别写出T、U、V各点的坐标. (1)相似比为4; (2)相似比为 ; y z y W x o x
D A B C Y 10 如图,请以坐标原点O为位似中心,作平行四边形的位似图形,并把它的边长放大3倍. 8 6 4 2 X 4 2 6 8 10 -10 -8 -6 -4 -2 0 -2 -4 -6 -8 -10