270 likes | 441 Views
HAPTOPHYTES. 21. Flagella, Haptonema. 14. 15. Haptonema Function. Obstacle Avoidance. 2) Adhesion. 3) Phagocytosis. 8. External Covering. 2) Organic Scales. 1) Naked. 24. 1. Organic Scale Formation. Figs. 10.7, 10.8 in Graham et al. 2008. External Covering. 3) Coccoliths. 5. 3.
E N D
HAPTOPHYTES 21
Flagella, Haptonema 14 15
Haptonema Function • Obstacle Avoidance 2) Adhesion 3) Phagocytosis 8
External Covering 2) Organic Scales 1) Naked 24 1
Organic Scale Formation Figs. 10.7, 10.8 in Graham et al. 2008
External Covering 3) Coccoliths 5 3 “Coccospheres”
Heterococcolith Formation Fig. 10.10 in Graham et al. 2008
Holococcolith Formation Figs. 10.9, 10.11 in Graham et al. 2008
Coccolith Function • Focusing Light • Limit Access by • Bacteria, Viruses • 3) Retard Herbivory • 4) Buoyancy Regulation Fig. 10.13 in Graham et al. 2008
Chloroplast Structure Fig. 10.14 in Graham et al. 2008
Cell Division Fig. 10.15 in Graham et al. 2008
Haptophyte Asexual and Sexual Reproduction 25 26 Prymnesium Species A (n) Prymnesium Species B (2n) Holococcoliths (n) Heterococcoliths (2n)
Evidence for Holococcolith (n) as Gametes, Heterococcoliths (2n) as Zygotes
Haptophyte Significance 28 Isochrysis Pavlova lutheri 29
Haptophyte Significance 10 Phaeocystis Colony 11 Phaeocystis is a Haptophyte. It forms a gelatinous colony. It is believed that their decaying remains are the cause of the foam on the sea shore.
Haptophyte Significance 27 Chrysochromulina 26 Prymnesium parvum
Haptophyte Significance Phaeocystis Colony DMS (Volatile) Production Emiliania 22 Fig. 10.16 in Graham et al. 2008
Haptophyte Significance 6 Oceans = 2/3 of Earth’s Surface Carbonate Deposits = ½ of Ocean Floor Haptophytes Contribute ¼ of Carbonate on Ocean Floor 7
Haptophyte Significance 30 Haptophytes Contribute at least 25% of Vertical Carbon Transport to Ocean Floor (Graham et al. 2008)
Haptophyte Significance 12 17 Isle of Wight Chalk Cliffs 13
1 http://img.search.com/thumb/d/d1/Emiliania_huxleyi_3.jpg/ 250px-Emiliania_huxleyi_3.jpg 2 http://www.biol.tsukuba.ac.jp/~inouye/ino/h/phaeocystis.gif 3 http://www.b-s-p.org/bspnews/981/images/981-05a.png 4 http://www.microscopy-uk.org.uk/micropolitan/marine/algae/phaeocystis450.jpg 5 http://www.ucmp.berkeley.edu/chromista/coccolith.gif 6 http://hjs.geol.uib.no/marinemicro/maps/0-0-2-map- sediments-facies.jpg 7 Graham and Wilcox 2000 8 Fig. 10-3 in Graham and Wilcox 2000
9 http://www.metoffice.gov.uk/research/hadleycentre/models/carbon_cycle/ CDIAC_glob_c_cycle.gif 10 http://www.microscopy-uk.org.uk/micropolitan/marine/algae/ phaeocystis450.jpg 11 http://www.biol.tsukuba.ac.jp/~inouye/ino/h/phaeocystis.gif 12 https://www.biomedia.cellbiology.ubc.ca/cellbiol/media/images/ lrg625/1130048723_Akaroa_Bay-NZ-coccolith_of_Gephyrocapsa_oceanica- Apr-05_m05-2.jpg 13 Fig. 10-7 in Wilcox and Graham 2000 14 http://www.jochemnet.de/fiu/bot4404/Hapto_haptonema.jpg 15 http://www.jochemnet.de/fiu/hapto1.gif 16 Fig. 10-11 in Wilcox and Graham 2000 17 http://www-biol.paisley.ac.uk/bioref/Habitats/Needles_DSC_3524.jpg
18 http://web.mit.edu/esgbio/www/lm/sugars/cellulose.GIF 19 http://www.nature.com/news/2001/010118/images/cellulose_200.jpg 20 http://www.2spi.com/catalog/analytical/images/3d/calcium% 20carbonate%20crystals.jpg 21 http://www.nhm.ac.uk/hosted_sites/ina/graphics/stampdetail.jpg 22 http://www-gte.larc.nasa.gov/img/able1.jpg 23 http://www.uth.tmc.edu/bmb/images/faculty-mary-marsh-fig2.jpg 24 http://www.uth.tmc.edu/bmb/images/faculty-mary-marsh-fig2.jpg 25 http://www.scielo.cl/fbpe/img/imar/v35n1/fig09-02.jpg 26 http://www.tpwd.state.tx.us/landwater/water/environconcerns/hab/ga/ images/p_parvumbuzan.jpg 27 http://www.jochemnet.de/fiu/bot4404/Hapto_Chrysochromulina2.gif 28 http://www.ag.auburn.edu/fish/image_gallery/data/media/32/oyster_food.jpg
29 http://www.lib.noaa.gov/korea/korean_aquaculture/algal.files/ microalgal002.gif 30 http://www.e3alive.org/wp-content/uploads/2008/07/carboncycle.png