650 likes | 758 Views
Reconstruction of regulatory modules based on heterogeneous data sources. Karen Lemmens PhD Defence September 29th 2008. Outline. 1. Introduction 2. Strategy 3. Achievements 4. Conclusions. Introduction & objectives Strategy Data integration
E N D
Reconstruction of regulatory modules based on heterogeneous data sources Karen Lemmens PhD Defence September 29th 2008
Outline 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Introduction & objectives • Strategy • Data integration • Association rule mining algorithms • Main achievements • ReMoDiscovery: Unraveling the yeast transcriptional network • DISTILLER: Condition-dependent combinatorial regulation in E. coli • Conclusions and perspectives Karen Lemmens
DNA 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Karen Lemmens
DNA & genes 1. Introduction 2. Strategy 3. Achievements 4. Conclusions TATCCCTCCCTGTTTATCATTAATTTCTAATTATCAGCGTTTTTGGCTGGCGGCGTAGCGATGCGCTGGTTACTCTGAAAAC GTCTATGCAAATTAACAAAAGAGAATAGCTATGCATGATGCAAACATCCGCGTTGCCATCGCGGGAGCCGGGGGGCGTA GGGCCGCCAGTTGATTCAGGCGGCGCTGGCATTAGAGGGCGTGCAGTTGGGCGCTGCGCTGGAGCGTGAAGGATCTTCT GAGATCACCCATAAGGCGTCCAGCCGTATGACATTTGCTAACGGCGCGGTAAGATCGGCTTTGTGGTTGAGTGGTAAGGA AAGCGGTCTTTTTGATATGCGAGATGTACTTGATCTCAATAATTTGTAACCACAAAATATTTGTTATGGTGCAAAAATAACAC ATTTAATTTATTGATTATAAAGGGCTTTAATTTTTGGCCCTTTTATTTTTGGTGTTATGTTTTTAAATTGTCTATAAGTGCCAAA TCGTCGGTAAGCAGATTTGCATTGATTTACGTCATCATTGTGAATTAATATGCAAATAAAGTGAGTGAATATTCTCTGGAGG GTGTTTTGATTAAGTCAGCGCTATTGGTTCTGGAAGACGGAACCCAGTTTCACGGTCGGGCCATAGGGGCAACAGGTTCG CCTGACCATCGTTCCGGCGCAAACTTCTGCGGAAGATGTGCTGAAAATGAATCCAGACGGCATCTTCCTCTCCAACGGTCC TGGCGACCCGGCCCCGTGCGATTACGCCATTACCGCCATCCAGAAATTCCTCGAAACCGATATTCCGAATTACATGTTTTG DNA mRNA protein GENE 1 GENE 2 Karen Lemmens
DNA & genes 1. Introduction 2. Strategy 3. Achievements 4. Conclusions TATCCCTCCCTGTTTATCATTAATTTCTAATTATCAGCGTTTTTGGCTGGCGGCGTAGCGATGCGCTGGTTACTCTGAAAAC GTCTATGCAAATTAACAAAAGAGAATAGCTATGCATGATGCAAACATCCGCGTTGCCATCGCGGGAGCCGGGGGGCGTA GGGCCGCCAGTTGATTCAGGCGGCGCTGGCATTAGAGGGCGTGCAGTTGGGCGCTGCGCTGGAGCGTGAAGGATCTTCT GAGATCACCCATAAGGCGTCCAGCCGTATGACATTTGCTAACGGCGCGGTAAGATCGGCTTTGTGGTTGAGTGGTAAGGA AAGCGGTCTTTTTGATATGCGAGATGTACTTGATCTCAATAATTTGTAACCACAAAATATTTGTTATGGTGCAAAAATAACAC ATTTAATTTATTGATTATAAAGGGCTTTAATTTTTGGCCCTTTTATTTTTGGTGTTATGTTTTTAAATTGTCTATAAGTGCCAAA TCGTCGGTAAGCAGATTTGCATTGATTTACGTCATCATTGTGAATTAATATGCAAATAAAGTGAGTGAATATTCTCTGGAGG GTGTTTTGATTAAGTCAGCGCTATTGGTTCTGGAAGACGGAACCCAGTTTCACGGTCGGGCCATAGGGGCAACAGGTTCG CCTGACCATCGTTCCGGCGCAAACTTCTGCGGAAGATGTGCTGAAAATGAATCCAGACGGCATCTTCCTCTCCAACGGTCC TGGCGACCCGGCCCCGTGCGATTACGCCATTACCGCCATCCAGAAATTCCTCGAAACCGATATTCCGAATTACATGTTTTG DNA mRNA protein GENE 1 GENE 2 GENE 1 GENE 2 Karen Lemmens
DNA & genes 1. Introduction 2. Strategy 3. Achievements 4. Conclusions TATCCCTCCCTGTTTATCATTAATTTCTAATTATCAGCGTTTTTGGCTGGCGGCGTAGCGATGCGCTGGTTACTCTGAAAAC GTCTATGCAAATTAACAAAAGAGAATAGCTATGCATGATGCAAACATCCGCGTTGCCATCGCGGGAGCCGGGGGGCGTA GGGCCGCCAGTTGATTCAGGCGGCGCTGGCATTAGAGGGCGTGCAGTTGGGCGCTGCGCTGGAGCGTGAAGGATCTTCT GAGATCACCCATAAGGCGTCCAGCCGTATGACATTTGCTAACGGCGCGGTAAGATCGGCTTTGTGGTTGAGTGGTAAGGA AAGCGGTCTTTTTGATATGCGAGATGTACTTGATCTCAATAATTTGTAACCACAAAATATTTGTTATGGTGCAAAAATAACAC ATTTAATTTATTGATTATAAAGGGCTTTAATTTTTGGCCCTTTTATTTTTGGTGTTATGTTTTTAAATTGTCTATAAGTGCCAAA TCGTCGGTAAGCAGATTTGCATTGATTTACGTCATCATTGTGAATTAATATGCAAATAAAGTGAGTGAATATTCTCTGGAGG GTGTTTTGATTAAGTCAGCGCTATTGGTTCTGGAAGACGGAACCCAGTTTCACGGTCGGGCCATAGGGGCAACAGGTTCG CCTGACCATCGTTCCGGCGCAAACTTCTGCGGAAGATGTGCTGAAAATGAATCCAGACGGCATCTTCCTCTCCAACGGTCC TGGCGACCCGGCCCCGTGCGATTACGCCATTACCGCCATCCAGAAATTCCTCGAAACCGATATTCCGAATTACATGTTTTG DNA mRNA protein GENE 1 GENE 2 GENE 1 GENE 2 Karen Lemmens
DNA & genes 1. Introduction 2. Strategy 3. Achievements 4. Conclusions TATCCCTCCCTGTTTATCATTAATTTCTAATTATCAGCGTTTTTGGCTGGCGGCGTAGCGATGCGCTGGTTACTCTGAAAAC GTCTATGCAAATTAACAAAAGAGAATAGCTATGCATGATGCAAACATCCGCGTTGCCATCGCGGGAGCCGGGGGGCGTA GGGCCGCCAGTTGATTCAGGCGGCGCTGGCATTAGAGGGCGTGCAGTTGGGCGCTGCGCTGGAGCGTGAAGGATCTTCT GAGATCACCCATAAGGCGTCCAGCCGTATGACATTTGCTAACGGCGCGGTAAGATCGGCTTTGTGGTTGAGTGGTAAGGA AAGCGGTCTTTTTGATATGCGAGATGTACTTGATCTCAATAATTTGTAACCACAAAATATTTGTTATGGTGCAAAAATAACAC ATTTAATTTATTGATTATAAAGGGCTTTAATTTTTGGCCCTTTTATTTTTGGTGTTATGTTTTTAAATTGTCTATAAGTGCCAAA TCGTCGGTAAGCAGATTTGCATTGATTTACGTCATCATTGTGAATTAATATGCAAATAAAGTGAGTGAATATTCTCTGGAGG GTGTTTTGATTAAGTCAGCGCTATTGGTTCTGGAAGACGGAACCCAGTTTCACGGTCGGGCCATAGGGGCAACAGGTTCG CCTGACCATCGTTCCGGCGCAAACTTCTGCGGAAGATGTGCTGAAAATGAATCCAGACGGCATCTTCCTCTCCAACGGTCC TGGCGACCCGGCCCCGTGCGATTACGCCATTACCGCCATCCAGAAATTCCTCGAAACCGATATTCCGAATTACATGTTTTG DNA mRNA protein GENE 1 GENE 2 GENE 1 GENE 2 TRANSCRIPTION Karen Lemmens
DNA & genes 1. Introduction 2. Strategy 3. Achievements 4. Conclusions TATCCCTCCCTGTTTATCATTAATTTCTAATTATCAGCGTTTTTGGCTGGCGGCGTAGCGATGCGCTGGTTACTCTGAAAAC GTCTATGCAAATTAACAAAAGAGAATAGCTATGCATGATGCAAACATCCGCGTTGCCATCGCGGGAGCCGGGGGGCGTA GGGCCGCCAGTTGATTCAGGCGGCGCTGGCATTAGAGGGCGTGCAGTTGGGCGCTGCGCTGGAGCGTGAAGGATCTTCT GAGATCACCCATAAGGCGTCCAGCCGTATGACATTTGCTAACGGCGCGGTAAGATCGGCTTTGTGGTTGAGTGGTAAGGA AAGCGGTCTTTTTGATATGCGAGATGTACTTGATCTCAATAATTTGTAACCACAAAATATTTGTTATGGTGCAAAAATAACAC ATTTAATTTATTGATTATAAAGGGCTTTAATTTTTGGCCCTTTTATTTTTGGTGTTATGTTTTTAAATTGTCTATAAGTGCCAAA TCGTCGGTAAGCAGATTTGCATTGATTTACGTCATCATTGTGAATTAATATGCAAATAAAGTGAGTGAATATTCTCTGGAGG GTGTTTTGATTAAGTCAGCGCTATTGGTTCTGGAAGACGGAACCCAGTTTCACGGTCGGGCCATAGGGGCAACAGGTTCG CCTGACCATCGTTCCGGCGCAAACTTCTGCGGAAGATGTGCTGAAAATGAATCCAGACGGCATCTTCCTCTCCAACGGTCC TGGCGACCCGGCCCCGTGCGATTACGCCATTACCGCCATCCAGAAATTCCTCGAAACCGATATTCCGAATTACATGTTTTG DNA mRNA protein GENE 1 GENE 2 GENE 1 GENE 2 TRANSCRIPTION TRANSLATION Karen Lemmens
Condition-dependent transcription 1. Introduction 2. Strategy 3. Achievements 4. Conclusions DNA mRNA protein GENE 1 Karen Lemmens
Condition-dependent transcription 1. Introduction 2. Strategy 3. Achievements 4. Conclusions DNA mRNA protein GENE 1 Karen Lemmens
Condition-dependent transcription 1. Introduction 2. Strategy 3. Achievements 4. Conclusions DNA mRNA protein GENE 1 TRANSCRIPTION TRANSLATION Karen Lemmens
Condition-dependent transcription 1. Introduction 2. Strategy 3. Achievements 4. Conclusions DNA mRNA protein GENE 1 GENE 1 TRANSCRIPTION TRANSLATION Karen Lemmens
Condition-dependent transcription 1. Introduction 2. Strategy 3. Achievements 4. Conclusions DNA mRNA protein GENE 1 GENE 1 TRANSCRIPTION TRANSLATION Karen Lemmens
Condition-dependent transcription 1. Introduction 2. Strategy 3. Achievements 4. Conclusions DNA mRNA protein GENE 1 GENE 1 TRANSCRIPTION TRANSLATION Karen Lemmens
Transcriptional regulation 1. Introduction 2. Strategy 3. Achievements 4. Conclusions GENE 1 Karen Lemmens
Transcriptional regulation 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Regulatory motifs GENE 1 Karen Lemmens
Transcriptional regulation 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Regulatory motifs GENE 1 Regulators GENE 1 Karen Lemmens
Transcriptional regulation 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Regulatory motifs GENE 1 Regulators GENE 1 Karen Lemmens
Transcriptional regulation 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Regulatory motifs GENE 1 Regulators GENE 1 Karen Lemmens
Transcriptional regulation 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Regulatory motifs GENE 1 Regulators GENE 1 GENE 1 Karen Lemmens
Transcriptional regulation 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Regulatory motifs GENE 1 Regulators GENE 1 GENE 1 Karen Lemmens
Transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Karen Lemmens
Transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Karen Lemmens
Transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Karen Lemmens
Transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Karen Lemmens
Transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Karen Lemmens
Transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Karen Lemmens
Transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Karen Lemmens
Transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Karen Lemmens
Transcriptional modules 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Karen Lemmens
Outline 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Introduction & objectives • Strategy • Data integration • Association rule mining algorithms • Main achievements • ReMoDiscovery: Unraveling the yeast transcriptional network • DISTILLER: Condition-dependent combinatorial regulation in E. coli • Conclusions and perspectives Karen Lemmens
Data integration 1. Introduction 2. Strategy 3. Achievements 4. Conclusions GENE 1 Karen Lemmens
Data integration 1. Introduction 2. Strategy 3. Achievements 4. Conclusions ChIP-chip data GENE 1 Karen Lemmens
Data integration 1. Introduction 2. Strategy 3. Achievements 4. Conclusions ChIP-chip data GENE 1 Regulatory motifs Karen Lemmens
Data integration 1. Introduction 2. Strategy 3. Achievements 4. Conclusions ChIP-chip data Microarray data GENE 1 Regulatory motifs Karen Lemmens
Network reconstruction 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Several methods for reconstruction of the transcriptional network exist Not all aspects of transcription taken into account by these methods ** Van den Bulcke T., Lemmens K., Van de Peer Y., Marchal K. (2006) Inferring Transcriptional Networks by Mining Omics Data. Current Bioinformatics, vol. 1, no. 3, pp. 301-313. ** Dhollander T., Sheng Q., Lemmens K., De Moor B., Marchal K., Moreau Y. (2007) Query-driven module discovery in microarray data. Bioinformatics, vol. 23, no. 19, pp. 2573-2580. Expression data Data integration Boolean ODE Bayesian Association (CLR, ARACNE) Bayesian SEREND Individual interactions Clustering Biclustering Query-driven biclustering Method of Segal et al. LeMoNe GRAM MA-Networker SAMBA Inferelator COGRIM Transcriptional modules Karen Lemmens
Association rule mining 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Association rule mining algorithms • Advantages: • Enable exhaustive search • Elegant and concurrent data integration • No co-expression assumption between regulator and target • Overlapping modules • Problems • Binary or discretized data • Filtering method necessary Karen Lemmens
Outline 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Introduction & objectives • Strategy • Data integration • Association rule mining algorithms • Main achievements • ReMoDiscovery: Unraveling the yeast transcriptional network • DISTILLER: Condition-dependent combinatorial regulation in E. coli • Conclusions and perspectives Karen Lemmens
ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Karen Lemmens
ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions Represent data in a mathematical way Karen Lemmens
ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Transcriptional module • Genes are regulated by a minimum number of regulators • Genes share minimum number of common regulatory motifs • Genes are co-expressed Karen Lemmens
ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Transcriptional module • Genes are regulated by a minimumnumber of regulators • Genes share minimum number of common regulatory motifs • Genes are co-expressed Karen Lemmens
ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Transcriptional module • Genes are regulated by a minimumnumber of regulators • Genes share minimum number of common regulatorymotifs • Genes are co-expressed Karen Lemmens
ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Transcriptional module • Genes are regulated by a minimumnumber of regulators • Genes share minimum number of common regulatorymotifs • Genes are co-expressed Karen Lemmens
ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Regulatory program: Regulators: Motifs: MBP1 SWI4 SWI6 STB1 • Co-expressed genes: YDL003W YER001W YGR109C YGR189C YGR221C YHR149C YER070W YPL256C YNL300W YPL163C YPL267W YPR120C YMR199W YMR199W YMR179W YML027W YKL113C Karen Lemmens
ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • ReMoDiscovery outperforms related methods for module detection • GRAM • SAMBA • Conclusions • Meaningful biological results • Better performance than related methods association rule mining algorithms are well suited for identification of regulatory modules through data integration Lemmens K., Dhollander T., De Bie T., Monsieurs P., Engelen K., Smets B., Winderickx J., De Moor B., Marchal K. (2006) Inferring transcriptional module networks from ChIP-chip-, motif- and microarray data. Genome Biology, vol. 7, no. 5, pp. R37. Karen Lemmens
ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Many aspects of transcription into account: • Regulatory motifs • Regulators • Co-expression of genes Condition dependency of the interactions is missing Karen Lemmens
ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Many aspects of transcription into account: • Regulatory motifs • Regulators • Co-expression of genes Condition dependency of the interactions is missing Karen Lemmens
ReMoDiscovery: Unraveling the yeast transcriptional network 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Many aspects of transcription into account: • Regulatory motifs • Regulators • Co-expression of genes Condition dependency of the interactions is missing Karen Lemmens
Outline 1. Introduction 2. Strategy 3. Achievements 4. Conclusions • Introduction & objectives • Strategy • Data integration • Association rule mining algorithms • Main achievements • ReMoDiscovery: Unraveling the yeast transcriptional network • DISTILLER: Condition-dependent combinatorial regulation in E. coli • Conclusions and perspectives Karen Lemmens