300 likes | 486 Views
COMPLEXES WITH TERMINALLY COORDINATED EQ (E = P, As; Q = S, Se, Te) LIGANDS. Contents. Introduction Complexes with W≡E (E = group 15 element) triple bonds Synthesis of complexes with linearly coordinated EQ ligands (Q = group 16 element)
E N D
COMPLEXES WITH TERMINALLY COORDINATED EQ (E = P, As; Q = S, Se, Te) LIGANDS
Contents • Introduction • Complexes with W≡E (E = group 15 element) triple bonds • Synthesis of complexes with linearly coordinated EQ ligands (Q = group 16 element) • Reactivity of linearly coordinated EQ Complexes • Summary
Coordination modes of NO EQ E = P, As, Sb, Bi Q = O, S, Se, Te
Complexes with Terminal Phosphido, Arsido and AntimonidoLigands Schrock Cummins Scheer R. R. Schrock, N. C. Zanetti, W. N. Davis Angew. Chem. Int. Ed. Engl.1995, 34, 2044. C. E. Laplaza, W. M. Davis, C. C. CumminsAngew. Chem. Int. Ed. Engl.1995, 34, 2042. M. Scheer, K. Schuster, T. A. Budzichowski, M. H. Chisholm, W. E. StreibChem. Commun.1995, 1671.
31P NMR: δ = 1080 ppm R. R. Schrock, N. C. Zanetti, W. N. Davis Angew. Chem. Int. Ed. Engl.1995, 34, 2044. M. Scheer, J. Müller, M. HäserAngew. Chem.1996, 108, 2637.
W-Sb 2.574(1) Å M. Scheer, J. Müller, G. Baum, M. HäserChem. Commun.1998, 2505. M. Scheer, J. Müller, M. Schiffer, G. Baum, R. Winter Chem. Eur. J.2000, 6, 1252.
13C NMR δ = 319.4 ppm (W≡C) W(1)-C(19) 1.813(1)Å
G. Balázs, M. Sierka, M. Scheer Angew. Chem. Int. Ed.2005, 44, 4920.
Bond lengths (Å) andAngles (°): Exp. Calc. W – Sb 2.525(2) 2.514 W – Neq 1.994(8) 2.015 W – Nax 2.33(1) 2.516 Neq – W – Sb 101.8(2) 104.1 Nax – W – Sb 180.0 –
31P NMR: δ = 1239 ppm 31P NMR: δ = -188 ppm W–P 2.142(1) Å [(HIPT)N3NW≡As] W–As 2.258(1) Å
W–P 2.544(3) Å W–I 2.7434(9) Å P–I 2.729(3) and 2.795(3) Å
Terminally Coordinated EQ Complexes 31P NMR: δ = 1080.3 ppm; 1JPW = 138 Hz 31P NMR: δ = 342.3 ppm; 1JPW = 771.5 Hz G. Balázs, J. C. Green, M. ScheerChem. Eur. J.2006, 12, 8603. G. Balázs, J. C. Green, D. M. P. MingosEur. J. Inorg. Chem.2007, 2443. C. E. Laplaza, W. M. Davis, C. C. CumminsAngew. Chem. Int. Ed. Engl.1995, 34, 2042. M. J. A. Johnson, A. L. Odom, C. C. Cummins Chem. Commun., 1997, 1523. Cummins
31P{1H} NMR 1JPTe = 1759 Hz 1JPW = 649 Hz 1JPSe = 790 Hz 1JPW = 727 Hz
DFT Optimized (RI-DFT, BP86, SV(P)) Transition State Structure
Selected bond lengths (Å) and angles (°) (N3N)W ≡ E W–P 2.162(4) W–As 2.290(1)
W–E Bond Dissociation Energies (kJ·mol−1) σ W-E-Q Hybrid. E = P sp0.5 E = Bi sp0.7 W–E Bond Dissociation Energies (kJ·mol−1) σ W-E Hybrid. E = P sp3.3 E = Bi sp6.6
W–E Bond Dissociation Energies (kJ·mol−1) E–QBond Dissociation Energies (kJ·mol−1)
Hirshfeld Charge Distribution: Positive on W and Negative on Q Fractional Bond Orders P = ♦,As = ■, Sb = ▲, Bi = ●
Conclusions • Synthesis of complexes containing linearly coordinated EQ ligands of the heavier group 15 and 16 Elements is possible • The π system can be best described as two orthogonal three centered two electron system • The [(N3N)W(PTe)] complex can readily be used as a tellurium transfer reagent
Acknowledgment • Prof. Dr. M. Scheer • Prof. Dr. J. C. Green • Prof. Dr. D. M. P. Mingos Thank you for your attention • Alexander von Humboldt Foundation • Deutsche Forschungsgemeinschaft • University of Regensburg