1 / 30

COMPLEXES WITH TERMINALLY COORDINATED EQ (E = P, As; Q = S, Se, Te) LIGANDS

COMPLEXES WITH TERMINALLY COORDINATED EQ (E = P, As; Q = S, Se, Te) LIGANDS. Contents. Introduction Complexes with W≡E (E = group 15 element) triple bonds Synthesis of complexes with linearly coordinated EQ ligands (Q = group 16 element)

quilla
Download Presentation

COMPLEXES WITH TERMINALLY COORDINATED EQ (E = P, As; Q = S, Se, Te) LIGANDS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. COMPLEXES WITH TERMINALLY COORDINATED EQ (E = P, As; Q = S, Se, Te) LIGANDS

  2. Contents • Introduction • Complexes with W≡E (E = group 15 element) triple bonds • Synthesis of complexes with linearly coordinated EQ ligands (Q = group 16 element) • Reactivity of linearly coordinated EQ Complexes • Summary

  3. Coordination modes of NO EQ E = P, As, Sb, Bi Q = O, S, Se, Te

  4. Possible synthetic roots for complexes with η1-EQ ligands

  5. Complexes with Terminal Phosphido, Arsido and AntimonidoLigands Schrock Cummins Scheer R. R. Schrock, N. C. Zanetti, W. N. Davis Angew. Chem. Int. Ed. Engl.1995, 34, 2044. C. E. Laplaza, W. M. Davis, C. C. CumminsAngew. Chem. Int. Ed. Engl.1995, 34, 2042. M. Scheer, K. Schuster, T. A. Budzichowski, M. H. Chisholm, W. E. StreibChem. Commun.1995, 1671.

  6. 31P NMR: δ = 1080 ppm R. R. Schrock, N. C. Zanetti, W. N. Davis Angew. Chem. Int. Ed. Engl.1995, 34, 2044. M. Scheer, J. Müller, M. HäserAngew. Chem.1996, 108, 2637.

  7. W-Sb 2.574(1) Å M. Scheer, J. Müller, G. Baum, M. HäserChem. Commun.1998, 2505. M. Scheer, J. Müller, M. Schiffer, G. Baum, R. Winter Chem. Eur. J.2000, 6, 1252.

  8. 13C NMR δ = 319.4 ppm (W≡C) W(1)-C(19) 1.813(1)Å

  9. G. Balázs, M. Sierka, M. Scheer Angew. Chem. Int. Ed.2005, 44, 4920.

  10. Bond lengths (Å) andAngles (°): Exp. Calc. W – Sb 2.525(2) 2.514 W – Neq 1.994(8) 2.015 W – Nax 2.33(1) 2.516 Neq – W – Sb 101.8(2) 104.1 Nax – W – Sb 180.0 –

  11. 31P NMR: δ = 1239 ppm 31P NMR: δ = -188 ppm W–P 2.142(1) Å [(HIPT)N3NW≡As] W–As 2.258(1) Å

  12. W–P 2.544(3) Å W–I 2.7434(9) Å P–I 2.729(3) and 2.795(3) Å

  13. Terminally Coordinated EQ Complexes 31P NMR: δ = 1080.3 ppm; 1JPW = 138 Hz 31P NMR: δ = 342.3 ppm; 1JPW = 771.5 Hz G. Balázs, J. C. Green, M. ScheerChem. Eur. J.2006, 12, 8603. G. Balázs, J. C. Green, D. M. P. MingosEur. J. Inorg. Chem.2007, 2443. C. E. Laplaza, W. M. Davis, C. C. CumminsAngew. Chem. Int. Ed. Engl.1995, 34, 2042. M. J. A. Johnson, A. L. Odom, C. C. Cummins Chem. Commun., 1997, 1523. Cummins

  14. 31P{1H} NMR 1JPTe = 1759 Hz 1JPW = 649 Hz 1JPSe = 790 Hz 1JPW = 727 Hz

  15. 31P{1H} NMR

  16. DFT Optimized (RI-DFT, BP86, SV(P)) Transition State Structure

  17. Selected bond lengths (Å) and angles (°) (N3N)W ≡ E W–P 2.162(4) W–As 2.290(1)

  18. single marks

  19. W–E Bond Dissociation Energies (kJ·mol−1) σ W-E-Q Hybrid. E = P sp0.5 E = Bi sp0.7 W–E Bond Dissociation Energies (kJ·mol−1) σ W-E Hybrid. E = P sp3.3 E = Bi sp6.6

  20. W–E Bond Dissociation Energies (kJ·mol−1) E–QBond Dissociation Energies (kJ·mol−1)

  21. Molecular Orbital Interaction Diagram

  22. Molecular Orbital Interaction Diagram

  23. Hirshfeld Charge Distribution: Positive on W and Negative on Q Fractional Bond Orders P = ♦,As = ■, Sb = ▲, Bi = ●

  24. Reactivity of N3NW(PTe)

  25. Reactivity of N3NW(PTe)

  26. Conclusions • Synthesis of complexes containing linearly coordinated EQ ligands of the heavier group 15 and 16 Elements is possible • The π system can be best described as two orthogonal three centered two electron system • The [(N3N)W(PTe)] complex can readily be used as a tellurium transfer reagent

  27. Acknowledgment • Prof. Dr. M. Scheer • Prof. Dr. J. C. Green • Prof. Dr. D. M. P. Mingos Thank you for your attention • Alexander von Humboldt Foundation • Deutsche Forschungsgemeinschaft • University of Regensburg

More Related