1 / 24

Formalisme noyau : Graphes Conceptuels de Base

Formalisme noyau : Graphes Conceptuels de Base. onTop. between. carac. carac. Basic conceptual graph (BG). Two kinds of nodes : “ concept nodes ” represent entities “relation nodes” represent relationships between these entities. Cube:*. 1. 2. Cube:A. 1. 2. 3. Ball:*.

Download Presentation

Formalisme noyau : Graphes Conceptuels de Base

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Formalisme noyau :Graphes Conceptuels de Base

  2. onTop between carac carac Basic conceptual graph(BG) • Two kinds of nodes : • “concept nodes” represent entities • “relation nodes” represent relationships between these entities Cube:* 1 2 Cube:A 1 2 3 Ball:* Ball:* 1 1 2 2 Color:* Labels are taken in the vocabulary (or support)

  3. The vocabulary (or support) T near(...,...) between(...,...,...) Animate Inanimate adjoin (...,...) Object Property onTopOf (...,...) Bloc Colour RegularObject 1. TC : Poset of concept types Cube Ball 2. TR: Poset of relation types partitioned into types of same arity V or S = (TC, TR, I) 3. I : Set of individual markers * : the generic marker [and : typing of individuals, relation signatures, …]

  4. A onTop between carac carac Basic conceptual graph(BG)G = (C, R, E, l) Cube:* 1 Labels are takenin the support 2 Cube:A 1 2 3 Ball:* Ball:* 1 1 2 2 Color:* “There is a cube, which is on top of cube A, and there are balls, with same color, A being between these balls”

  5. Let’s compare BGs … First : how to compare labels ? (t,m)  (t’,m’)if and only if t  t’ and m  m’ where the order over I{*} is as follows: for all i in I, * > i for all i and j in I, i and j are non comparable Poset of concept labels Ex: compute the partial order on the following labels: (Cube, A) (Cube,*) (RegularObject,*) (Ball,*) (RegularObject,B) (Ball,B)

  6. « Projection » (BG Homomorphism) ? G Q « is the knowledge encoded in graph Q present in graph G? »« does G provides an answer to Q? » • Mapping P from the nodes of Q to the nodes of G, which: • preserves bipartition • preserves edges and their numbering if c-i-r then P(c)-i-P(r) • may specialise labels type subtype generic marker individual marker

  7. carac onTop onTop carac carac Ball d2 Size:big d1 Object c2 Object c1 1 2 1 1 onTop r5 carac r4 r2 r1 2 1 2 2 carac r6 Cube d3 Cube c3 Color:gray c4 1 2 1 1 Color:gray d4 r7 r3 2 2 2 1 Cube d5 r8 Size:big c5 fact G query Q Q: “Are there an object on top of a big cube and a gray object?”

  8. onTop onTop carac carac carac Ball d2 Size:big d1 Object c2 Object c1 1 2 1 1 onTop r5 carac r4 r2 r1 2 1 2 2 carac r6 Cube d3 Cube c3 Color:gray c4 1 1 2 1 Color:gray d4 r7 r3 2 2 2 1 Cube d5 r8 Size:big c5 fact G query Q Image graph 1: there is a ball on top of a big gray cube

  9. onTop onTop carac carac Ball d2 Size:big d1 Object c2 Object c1 1 2 1 1 onTop r5 carac r4 r2 r1 2 1 2 2 carac r6 Cube d3 Cube c3 Color:gray c4 1 1 2 1 Color:gray d4 r7 r3 2 2 2 1 carac Cube d5 r8 Size:big c5 fact G query Q Image graph 2: there is a ball on top of a big cube and there is a gray cube

  10. member in in in Project:P member member Person Person worksWith Researcher Researcher:K Researcher:J member member worksWith Office Project Project Office:#124 near Query Q Fact G Q: “Are there people working together, who are each member of a project?”

  11. member in in in near Project:P member member Person Person worksWith Researcher Researcher:K Researcher:J member member worksWith Office Project Project Office:#124 Query Q Fact G

  12. Specialisation/Generalisation Projection defines a generalisation relation among SGs QG (GQ) if there is a homomorphism from Q to G Q is more general than G G is more specific than Q Problème fondamental : BG-Homomorphisme Données : deux BGs G et HQuestion : y-a-t-il un homomorphisme de G dans H? (problème NP-complet)

  13. Classical graph homomorphism is a particular case of BG homomorphism • A graph homomorphismh from G=(VG, EG) to H=(VH,EH) is a mapping from VG to VH that preserves edges: • if (x,y) is in EG, then (h(x),h(y)) is in EH d 1 2 c G 3 b H a

  14. T 1 r 2 T From graph homomorphism to BG homomorphism Support f TC = {T}TR ={r}M = {*} There is a homomorphism from a graph G to a graph H if and only if there is a BG-homomorphism from f(G) to f(H) From BGs to graphs ? There is a polynomial transformation too…

  15. T p p p p p p p T T T T T T T T Ex : Relationships between these BGs? Specialization is reflexive, transitive but not antisymmetric: it is a preorder

  16. Quelle sémantique pour les BGs ? Intuitivement : un BG représente l’existence d’entités et de relations entre ces entités “There is a cube, which is on top of cube A, and there are balls, with same color, A being between these balls” Ca n’est pas assez précis : Combien y-a-t-il d’objets ? Sont-ils tous différents ?Est-il sous-entendu que ces objets ont tous une couleur?Peut-il y avoir un autre objet sur le cube A? Si on a « onTop » ou « between » a-t-on aussi « near » ? Besoin d’une sémantique formelle Sémantique ensembliste (ou théorie des modèles) Sémantique logique

  17. First-order logical semantics (F) Translation of the Support types (concept/relation) predicatesindividual markers constants ‘subtype’ partial order formulas concept types t < t’x t(x)  t’(x) x Bloc(x)  Object(x) relation typesr < r’x1... xk r(x1,..., xk)  r’(x1,..., xk) x1x2 adjoin(x1,x2)  near(x1,x2) F(S) is the set of the formulas translating the type posets

  18. onTop between carac carac Translation of a BG x Cube:* 1 2 A Cube:A 1 2 3 y Ball:* Ball:* z 1 1 2 2 Color:* u • For each generic concept node, a new variable • For each individual concept node with marker i,the constant assigned to i

  19. onTop between carac carac x • For each node,anatom Cube:* Cube(x) 1 onTop(x,A) 2 A Cube:A Cube(A) between(A,y,z) 1 z y 2 3 Ball:* Ball:* Ball(y) Ball(z) 1 1 2 2 Color:* Color(u) u carac(y,u) carac(z,u) Cube(x)  Cube(A)  Ball(y)  Ball(z)  Color(u) onTop(x,A)  between(A,y,z)  carac(y,u)  carac(z,u) xyzu

  20. Quelle sémantique pour l’homomorphisme? • S’il existe un homomorphisme de Q dans G, cela veut dire quoi? Intuitivement : « la connaissance représentée par Q est aussi présente dans G », « G est plus précis que Q », « on peut déduire Q de G », «G implique Q » Formellement :F(Q) se déduit de F(G) et de F(S) • Et s’il n’existe pas d’homomorphisme de Q dans G, que peut-on en conclure?

  21. f Ensemble de formulesdans une logique K Sémantique logique « fondés par rapport à une logique » A reformuler en termes de BGs • Les raisonnements doivent être fondés par rapport à la déduction dans cette logique • adéquats, corrects(sound) : si i peut être inféré de Kalors f(i) est déductible de f(K) • complets (complete) : si f(i) est déductible de f(K) alors i peut être inféré de K

  22. Support S t < t’r < r’ Graphs (BGs) BGs are logically founded F predicates, constantsx t(x)  t’(x)x1... xk r(x1,..., xk)  r’(x1,..., xk) F ( , )formulas • BG homomorphism is equivalent to deduction Soundness: if Q  G then F(Q) deducible from F(G), F(S) Completeness: if F(Q) deducible from F(G), F(S) then Q  G • the BG model is equivalent to the ( , )FOLfragment(without function) • (one can get rid off universally quantified formulas associated with the support)

  23. Un graphe est sous forme normale s'il n'a pas deux sommets concepts avec le même marqueur individuel T:a r T: b s Une limitation à la complétude T:a r T:b T:a r T:b s T:a s T:b H G F(G) et F(H)équivalentesmais G et H incomparables par homomorphisme Le BG homomorphisme est complet par rapport à la déduction si le graphe cible est sousforme normale

  24. Support (vocabulary) Basic (conceptual) graphsdefined on support The BG model Logical language Formulas Operations BG Homomorphism (« Projection ») Deduction FOL

More Related